跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳建儀
研究生(外文):Wu, Chieni
論文名稱:由積分得來的多重zeta值的洗牌關係式
論文名稱(外文):Shuffle Relations of Multiple Zeta Values Produced from Integrations
指導教授:余文卿余文卿引用關係
指導教授(外文):Minking Eie
口試委員:康明昌廖文欽江謝宏任
口試委員(外文):Ming-Chang KangWen-Chin LiawHung-Jen Chiang-Hsieh
口試日期:2011-05-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:29
中文關鍵詞:洗牌關係
外文關鍵詞:Shuffle Relations of Multiple Zeta Values
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we shall use an elementary shuffle relation to produce many double weighted sum formulae. Furthermore, we use the shuffle relations of multiple zeta values with two parameters to produce some interesting formulae as shown in Main Theorems 1, 2 and 3.
1 Introduction 3
2 Drinfeld integrals and shuffle relations 7
3 A shuffle relation with two parameters 13
4 Shuffle relations from double integrals 25
[1] B. C. Berndt, Ramanujan's Notebooks, Part I and II, Springer-Verlag, New York,
1985, 1989.
[2] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums,
Proc. Edinburgh. Math. Soc. (2) 38 (1995), no. 2, 277-294.
[3] J. M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Election, J.
Combin. 3 (1996), no. 1, 1-27.
[4] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), no. 3, 907-941.
[5] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp.
Math. 291 (2001), 71-92.
[6] J. M. Borwein and D. M. Bradley, Thirty-two Goldbach variations, Int. J. Number
Theory 2 (2006), no. 1, 65-103.
[7] M. Eie and W.-C. Liaw, and Y. L. Ong A restricted sum formula among multiple
zeta values, to apper in J. Number Theory (2009).
[8] M. Eie and C.-S.Wei, A short proof for the sum formula and its generalization, Arch. Math. 91 (2008), no. 4, 330-338.
[9] M. Eie and C.-S. Wei, Applications of a shue product formula, submitted, 2010.
[10] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15-35.
[11] A. Granville, A decomposition of Riemann's zeta-function, Analytic number theory (Kyoto, 1996), 95-101.
[12] M. E. Ho man, Multiple harmonic series, Paci c J. Math. 152 (1992), no. 2, 275-290.
[13] M. E. Ho man and C. Moen, Sums of triple harmonic series, Paci c J. Number
Theory 60 (1996), no. 2, 329-331.
[14] C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48
(1994), no. 2, 113-132.
[15] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta
values, J. Number Theory 74 (1999), no. 1, 39-43.
[16] R. Sitaramachandra Rao and M. V. Subbarao, Transformation formula for multiple
series, Paci c J. Math. 113 (1984), no.471-479.
[17] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 493-512, Progr. Math. 120, Birkhauser, Basel, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top