|
[1] B. C. Berndt, Ramanujan's Notebooks, Part I and II, Springer-Verlag, New York, 1985, 1989. [2] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277-294. [3] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp. Math. 291 (2001), 71-92. [4] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), no. 3, 907-941. [5] J. M. Borwein and D. M. Bradly, Thirty-two Goldbach variations, Int. J. Number Theory 2 (2006), no. 1, 65-103. [6] L. Euler, Opera Omnia, Ser 1, Vol. XV, Teubner, Berlin, 1917, pp. 217-267. [7] M. Eie and C.-S.Wei, A short proof for the sum formula and its generalization, Arch. Math. 91 (2008), no. 4, 330-338. [8] M. Eie and C.-S. Wei, Applications of a shue product formula, submitted, 2010. [9] M. Eie, W.-C. Liaw and Y. L. Ong, A restricted sum formula among multiple zeta values, J. Number Theory 129 (2009), no. 4, 908-921. [10] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15-35. [11] A. Granville, A decomposition of Riemann's zeta-function, Analytic number theory (Kyoto, 1996), 95-101. [12] C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), no. 2, 113-132. [13] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39-43. [14] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 493{512, Progr. Math. 120, Birkhauser, Basel, 1994.
|