跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:童彥蓉
研究生(外文):Yenjung Tung
論文名稱:應用白努力分佈在多重zeta值的洗牌關係式上
論文名稱(外文):Application of the Bernoulli Distribution to Shuffle Relations of Multiple Zeta Values
指導教授:余文卿余文卿引用關係
指導教授(外文):Minking Eie
口試委員:康明昌廖文欽江謝宏任
口試委員(外文):Ming-Chang KangWen-Chin LiawHung-Jen Chiang-Hsieh
口試日期:100.05.30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:27
中文關鍵詞:多重zeta值洗牌關係式
外文關鍵詞:Multiple Zeta ValuesShuffle Relations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
In this paper, we first prove a shuffle formula from the shuffle product formula of two
multiple zeta values of height one. Multiplying both sides of the shuffle formula by
some binomial coefficients and then performing integral operation on both sides, we
are able to obtain more interesting weighted sum formulae concerning the evaluation
of sums of multiple zeta values in terms of single zeta values.

1 Introduction
2 Drinfeld integral representations of multiple zeta values and double weighted sum formulas
3 The Bernoulli distribution
4 The expectations of Bernoulli distributions

[1] B. C. Berndt, Ramanujan's Notebooks, Part I and II, Springer-Verlag, New York, 1985, 1989.
[2] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277-294.
[3] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp. Math. 291 (2001), 71-92.
[4] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), no. 3, 907-941.
[5] J. M. Borwein and D. M. Bradly, Thirty-two Goldbach variations, Int. J. Number Theory 2 (2006), no. 1, 65-103.
[6] L. Euler, Opera Omnia, Ser 1, Vol. XV, Teubner, Berlin, 1917, pp. 217-267.
[7] M. Eie and C.-S.Wei, A short proof for the sum formula and its generalization, Arch. Math. 91 (2008), no. 4, 330-338.
[8] M. Eie and C.-S. Wei, Applications of a shue product formula, submitted, 2010.
[9] M. Eie, W.-C. Liaw and Y. L. Ong, A restricted sum formula among multiple zeta values, J. Number Theory 129 (2009), no. 4, 908-921.
[10] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15-35.
[11] A. Granville, A decomposition of Riemann's zeta-function, Analytic number theory (Kyoto, 1996), 95-101.
[12] C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), no. 2, 113-132.
[13] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39-43.
[14] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 493{512, Progr. Math. 120, Birkhauser, Basel, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top