(35.175.212.130) 您好!臺灣時間:2021/05/17 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:孫崇文
研究生(外文):Sun,Chung Wen
論文名稱:閃頻偏極化干涉顯微鏡於三維輪廓量測
論文名稱(外文):Inspection of 3D Profile with Stroboscopic Polarization Sensitive Digital Interference Microscope
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Chen,Jenq Shyong
口試委員:王祥辰敖仲寧陳方元陳政雄
口試委員(外文):Wang,HSsiang chenAoh,J. N.Chen,Yuan FangChen,Jenq Shyong
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:126
中文關鍵詞:數位全像顯微鏡三維輪廓量測相位移包裹相位相位展開合成波長白光干涉儀
外文關鍵詞:phase ambiguityInterferencemultiwavelengthPhase-Shiftingwrapped phaseFresnel TransformationDigital Holographic Microscope
相關次數:
  • 被引用被引用:3
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文建立一套閃頻偏極化干涉顯微鏡(Polarization Stroboscopic Sensitive Digital Interference Microscope),此系統光路為同軸式干涉顯微鏡架構,比起離軸式全像顯微鏡(Digital Holography Microscope, DHM)架構,同軸式架構CCD有效像素使用率可達最大化,使得待測物三維輪廓重建之空間解析度優於離軸式DHM。
因光路系統為同軸式干涉架構,所以在重建三維輪廓上,使用相位移法(Phase-Shifting),傳統相位移法為利用壓電致動器步階式推動參考臂之反射鏡,使得干涉訊號可以有不同之相位移,接著代入相位移演算法,便可重建待測物三維輪廓,而這種方法可能會使機構產生很大的加速度,造成機構共振而產生相位移不精準,導致重建三維輪廓產生誤差;此外使用光學干涉術(相位移法)量測時,由於量測的縱向高度範圍受限於光源之波長,而產生包裹相位(wrapped phase)的問題,本論文主要為改善這兩個問題。
本研究將利用LED閃頻鎖相(Stroboscopic Illumination Lock-in)之電控技術,以弦波的方式執行相位移,取代傳統步階式相位移,藉此排除步階調變而造成的震動問題,降低相位移誤差,並達到快速干涉影像之拍攝。透過R(627nm)、G(530nm)、B(470nm)LED三光源,以多彩合成波長方式,透過計算等效波長可達7.84um,將其縱向量測範圍從幾百奈米增加到數微米,解決量測的縱向高度範圍受限於光源之波長,而產生包裹相位的問題。
同時也解決在利用合成波長時,所衍伸的兩個問題:第一,由於使用的感測器為彩色CCD,在一個快門內可以得到R、G、B多彩的干涉影像,透過CCD軟體分離出R、G、B的干涉影像,因此必須降低R、G、B LED光源產在影像上所產生的cross-talk效應。我們在R、G、B LED光源上加入對應之Bandpass Filter,以及利用互相垂直之偏振光不干涉的原理,加入偏振片,以上兩種設計來減低多波長光譜間的cross-talk效應;第二,由於使用合成波長是將三個光源的相位疊加,會導致雜訊同時被放大,根據文獻利用影像處理方法降低雜訊。
從重複性實驗的結果可以得到,閃頻鎖相積分相移法比起步階式相移法變所重建的三圍輪廓,經統計可得知變異量較小,意即更為穩定。同時利用合成波長解決包裹相位的問題,可將縱向量測範圍擴展到7.84um,並且由機構設計降低R、G、B LED cross-talk及利用影像處理將合成波長放大的雜訊,降為原本單一光源的雜訊大小。本系統量測三維輪廓主要為同軸式干涉架構,亦可互相切換為DHM、白光干涉儀,及一般顯微物鏡。

In this study, we developed a Polarization Stroboscopic Sensitive Digital Interference Microscope. The optical system is in-line interference microscope. To compare with Digital Holography Microscope, in-line interference microscope CCD has the better effect of using pixels. It makes the space resolution of 3D profile greater than DHM.
Owing to in-line interference microscope, we usually use phase shifting when reconstructing 3D profile. Traditional method of phase shifting is using PZT step-pushed the mirror of reference arm which make the interference has the different phase shifts. Then, we use algorithm to reconstruct 3D profile. However, this method may bring out the error because of high acceleration leading resonance.
Furthermore, in optical interference Measurement, there will be the wrapped phase due to the range of vertical height limits to the light source wavelength. This study mainly resolves the two problem.
We will use sine wave to implement phase shift by LED stroboscopic Illumination Lock-in instead of traditional phase shift. Therefore, we can eliminate the vibration of step-pushed to decrease inaccuracy of phase shift. We use R(627nm, G(530nm) and B(470nm)LED to calculate equivalent wavelength is 7.84um by multicolor-wavelength. Then broaden the range of vertical height from hundreds nanometer to several micrometer.
In the meanwhile, it also resolves two questions in the process of multicolor-wavelength. First, We use color CCD to detect RGB interference information within one shot by way of using CCD software to separate RGB interference. Hence, we have to reduce Cross-talk effect which is produced by RGB LED light source. We insert Bandpass Filter and use the theorem which about polarization does not interfere in case of perpendicular, and add polarizer to the end of fiber. These two designs are used to reduce Cross-talk effect, so that can decrease the noises of RGB multiwavelength. Second, using three wavelength phases superimposition when multicolor-wavelength will amplify the noise. So according to reference, we use image process to decrease the noise.
From the result, we proved that comparing with step phase shift Stroboscopic Illumination Lock-in leading less error in the process of reconstructed 3D profile. In other words, Stroboscopic Illumination Lock-in is more stable. Next, we broaden the range of vertical height to 7.84um and design the module to eliminate R, G, B LED cross-talk, and using image process to make the size of noise reduce to single light source. The main shaft of this study is in-line interference microscope, but also can be switched to DHM, white light interference and common microscope.

致謝 III
摘要 IV
Abstract VI
目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
第二章 文獻回顧 6
2-1 Optical Coherence Tomography 6
2-2 Intergration – Bucket相位移法 10
2-3 多彩合成波長 13
2-4 全像術及其發展 17
2-5 離軸式(Off-axis)數位全像 20
2-6 同軸式(In-line)數位全像 24
第三章 光學理論架構 26
3-1低同調干涉術原理 26
3-2 Integration–Bucket原理 29
3-3 多彩合成波長原理 32
3-4 全像術原理 35
3-1-1 全像片之記錄 35
3-1-2 影像之重建 38
3-2-1 多彩數位全像顯微鏡之記錄 42
3-2-2 多彩數位全像顯微鏡之重建 44
第四章 系統規格與元件設計 46
4-1 前言 46
4-2 本研究所使用的光學顯微鏡介紹 47
4-3 照明光源改裝 51
4-4 導光模組改裝與設計 58
第五章 實驗架構與量測 64
5-1 光路與系統架設 64
5-2 Integration – Bucket相移法與步階相移法比較 71
5-3 合成波長解決包裹相位 79
5-4 同軸相位移法與離軸DHM比較 92
5-5 同軸相位移法與白光干涉儀比較 96
第六章 結論與未來展望 101
6-1 結論 101
6-2 未來展望 103
參考文獻 104
附錄 108


1.A. F. Fercher and E. Roth, 「Ophthalmic laser interferometry. Proc. SPIE vol. 658, pp. 48-51. 1986.
2.Fercher, AF; Mengedoht, K; Werner, W. Eye-length measurement by interferometry with partially coherent light.. Optics letters. 1988, 13 .
3.A. F. Fercher, 「Ophthalmic interferometry,」 Proceedings of the International Conference on Optics in Life Sciences, Garmisch-Partenkirchen, Germany, 12–16 August 1990. Ed. G. von Bally and S. Khanna, pp. 221-228.
4.Huang, D; Swanson, EA; Lin, CP; Schuman, JS; Stinson, WG; Chang, W; Hee, MR; Flotte, T et al.. Optical coherence tomography.. Science. 1991, 254 (5035): 1178–81.
5.Zysk, AM; Nguyen, FT; Oldenburg, AL; Marks, DL; Boppart, SA. Optical coherence tomography: a review of clinical development from bench to bedside.. Journal of biomedical optics. 2007, 12 (5): 051403.
6.Swanson, E. A.; Izatt, J. A.; Hee, M. R.; Huang, D.; Lin, C. P.; Schuman, J. S.; Puliafito, C. A.; Fujimoto, J. G.. In vivo retinal imaging by optical coherence tomography. Optics Letters. 1993, 18 (21): 1864
7.Drexler, Wolfgang; Morgner, Uwe; Ghanta, Ravi K.; Kärtner, Franz X.; Schuman, Joel S.; Fujimoto, James G.. Ultrahigh-resolution ophthalmic optical coherence tomography.. Nature Medicine. 2001, 7 (4): 502
8.P H Tomlins and R K Wang, ”Theory, developments and applications of optical coherence tomography,” Appl. Phys., 38, 2519–2535, 2005.
9.J. M. Schmitt, “Optical Coherence Tomography(OCT): A Review,” IEEE, 5, 1999.
10.A G. PODOLEANU, “Optical Coherence Tomography,” Bri. Jou. Rad., 78, 976-988, 2005.
11.Y. Watanabe, Y. Hayasaka and M. Sato, “Full-field optical coherence tomography with achromatic phase shifter,” IEEE., 04, 2004.
12.Y. Yang and Z. Ding, “Full-field optical coherence tomography by achromatic phase shifter with a rotating half-wave plate,” Proc. of SPIE, 6534 65340U-1, 2007.

13.C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen and J. S.Nelson, “High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett., 25, 2000.
14.A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, “Real-time in vivo color Doppler optical coherence tomography,” Journal of Biomedical Optics., 7, 123-129, 2002.
15.Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, and Emmanuel Beaurepaire “High-resolution full-field optical coherence tomography with a Linnik microscope”Applied Optics, Vol. 41, Issue 4, pp. 805-812 (2002)
16.Arnaud Dubois “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets” JOSA A, Vol. 18, Issue 8, pp. 1972-1979 (2001)
17.S. D. Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Optics Letters, Vol. 30, 2706 (2005)
18.D. Parshall, and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Applied Optics, Vol. 45, 451 (2006)
19.N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Optics Express, Vol. 15, 9239, (2007).
20.Dennis Gabor, “A new microscopic principle,” Nature, vol.161, 777-778, (1948).
21.Emmettn Leith, and Juris Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am., vol.52, 1123-1130, (1962).
22.Robert, Powell, and Karl A. Stetson, “Interferometric Vibration Analysis by Wavefront Reconstruction,” J. Opt. Soc. Am., vol.55, 1593-1598, (1965).
23.U. Schnars, and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Applied Optics, vol.33, 179-181, (1994).
24.Etienne Cuche, Pierre Marquet, and Christian Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Applied Optics , vol.38, 6994-7001, (1999).
25.Christopher J. Mann, Lingfeng Yu, Chun-Min Lo, and Myung K. Kim,“ High-resolution quantitative phase-contrast microscopy by digital holography,” OPTICS EXPRESS , Vol. 13, No. 22,8698.
26.Ichirou Yamaguchi, and Tong Zhang,“Phase-shifting digital holography,” Optics Letters, vol.22, 1268-1270, (1997).
27.Tong Zhang, and Ichirou Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Optics Letters, vol.23, 1221-1223, (1998).
28.Ichirou Yamaguchi, Jun-ichi Kato, Sohgo Ohta, and Jun Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Applied Optics, vol.40, 6177-6186, (2001).
29.Ichirou Yamaguchi, Takashi Ida, Masayuki Yokota, and Kouji Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Applied Optics, vol.45, 7610-7616, (2006).
30.T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. -P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Applied Optics, Vol. 44, 4461, (2005).
31.趙堂烈, “極化多彩數位全像顯微鏡技術之開發", 國立中正大學光機電所 碩士論文, 2008年7月29日。
32.林子聖, “閃頻多彩極化數位全像顯微鏡系統之開發", 國立中正大學機械所 碩士論文, 2010年7月30日。
33.T. Kreis, “Handbook of Holographic Interferometry,” WILEY-VCH GmbH & Co. KGaA, (2005), ISBN 3-527-40546-1
34.Kjell J. Gåsvik, Optical Metrology, John Wiley and Sons, New York,(2002).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10. 池文海、楊宗儒、呂正雄 ( 2008 )。內部行銷與情緒智力對員工績效之影響。中華管理學報,9(3),1-22。
2. 16. 李雯娣,(2000),國小兒童性格特質之研究,國立屏東師範學院國民教育研究所碩士論文。
3. 17. 李元墩、藍俊偉、陳清燿(1999),企業白領員工生產力衡量之研究-以台灣電子產業為例,黃埔學報,第37期,345-361。
4. 19. 李新民、陳密桃(2006),幼兒教師的情緒勞務因素結構及其對工作倦怠之影響。高雄師大學報,20,67-89。
5. 30. 林尚平,(2000),組織情緒勞務負擔量表之發展,中山管理評論,3(8),427-447
6. 31. 林尚平、楊妮菁、張淑慧,(2000),情緒規則、社會化歷程及相關情緒勞務管理議題之個案探討。商管科技季刊,1(1),67-86。
7. 38. 房美玉,(2002),儲備幹部人格特質甄選量表之建立與應用-以某高科技公司為例,人力資源管理學報,第2卷,第1期,頁1~18。
8. 48. 黃培文 ,(2004),工作適性的組織、群體及職務層級對工作滿意、工作績效與工作轉換意圖的同時效果-以台灣旅館業餐飲部員工為例,國立中山大學人力資源管理研究所博士論文。
9. 62. 張春興、楊國樞,(1996)。心理學。台北市:三民書局股份有限公司。
10. 79. 鄭瀛川,(2004年),外派大陸臺籍經理人領導行為轉變歷程之研究,國立政治大學心理學系博士論文。