(3.236.214.19) 您好!臺灣時間:2021/05/10 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王襦密
研究生(外文):Wang,Rumi
論文名稱:以氧化鋅奈米粒子為主動層之場效電晶體特性探討
論文名稱(外文):Characterization of Field-effect Transistor Based on Zinic Oxide Nanoparticles
指導教授:何正榮
指導教授(外文):Ho,Jeng-Rong
口試委員:許佳振何正榮鄭榮偉陳溪泉
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:氧化鋅電晶體
外文關鍵詞:Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文以氧化鋅(Zinc Oxide)透明半導體薄膜做為通道層,製作薄膜電晶體元件。首先將氧化鋅奈米粒子分散於溶液中在以旋轉塗佈的方式成膜在二氧化矽/矽(SiO2/Si)基板上,退火500℃後量測元件特性。由於此溶液配置做出的電晶體元件特性不佳,為改善氧化鋅的成膜品質,提升元件特性,因而在氧化鋅溶液中添加PVPh(poly 4-vinylphenol) 作為分散劑探討其對電晶體I-V特性的影響。
比較有添加PVPh及無添加的氧化鋅薄膜,添加PVPh的氧化鋅薄膜經高溫退火後奈米粒子的連接情況較無添加PVPh者好很多,製作成電晶體元件,元件之載子移動率(Mobility) 有明顯提升(從0.025 cm2 /V s提升到4.18 cm2 /V s),但開關電流比(on/off ratio)卻也降低很多(從378到4),推測開關電流比下降原因為:溶液揮發速度太快致使表面粗糙度增加,同時讓off current攀升導致開關現象不明顯。為降低溶液成膜的揮發速度我們改以揮發速度較慢的不同溶劑來進行溶液配置,實驗結果元件的開關電流比有上升的趨勢。

In this thesis, we present a solution-based method to fabricate thin film transistors (TFTs). The zinc oxide nanoparticle (ZnO NP ) solution was spin coated on silica/silicon (Si/SiO2) substrate as a semiconductor layer and then annealed at 500℃ for improving the TFT characteristics. The structural, electrical and optical properties of the ZnO TFTs were investigated by filed emission scanning electron microscope (FE-SEM), I-V meter, x-ray diffracotmeter (XRD) and photoluminance (PL) measurement. Because the characteristics of solution processed TFT is not good, to get a better morphology of the semiconductor layer and this leads to a better TFT performance, thus we added PVPh(poly 4-vinylphenol) as a stabilizer to ZnO suspensions and dicussed PVPh to the transistor I-V characteristic influence.
Compared with the morphology of zinc oxide nanoparticle film without stabilizer and with stabilizer, the nanoparticles connection of the film with stabilizer is better. The field-effect mobility increases from 0.025 to 4.18 cm2 /V s, But the switch current ratio (on/off ratio) reduces from 378 to 4. Extrapolated that the reason of switch current ratio drop: the solvent is too volatile to increase the roughness of ZnO thin film, and off current climb up simultaneously. In order to reduce the solution volatility speed, We change a different solvent with a low volatilize speed to fabricate TFT.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2動機與目的 2
第二章 文獻回顧 3
2.1氧化鋅的成膜方法 3
2.1.1射頻濺鍍法(RF Sputter) 3
2.1.2原子層沉積法(Atomic layer deposition) 6
2.1.3溶膠凝膠法(sol-gel) 8
2.1.4水熱法(Hydrothermal process) 8
2.2氧化鋅溶液法製作薄膜電晶體研究發展 10
2.2.1退火對氧化鋅薄膜的影響 10
(a)高溫退火 10
(b)雷射退火 12
2.2.2氧化鋅電晶體top-gate與bottom-gate結構之特性分析 14
2.2.3成膜品質對氧化鋅電晶體的影響 16
2.2.4氧空缺對氧化鋅TFT特性的影響 22
2.3傳承與創新 25
第三章 製程方法 26
3.1 實驗用品 26
3.2 實驗設計與目標 27
3.3氧化鋅奈米粒子製作薄膜電晶體 28
3.4 氧化鋅奈米粒子摻混PVPh製作薄膜電晶體 30
第四章 實驗結果與討論 32
4.1氧化鋅奈米粒子電晶體 32
4.1.1氧化鋅奈米粒子濃度之影響 32
4.1.2小結 36
4.2氧化鋅奈米粒子摻混PVPh之電晶體 37
4.2.1不同溶劑對元件特性的影響 37
4.2.1.1酒精 37
4.2.1.2 PGMEA 49
4.3氧化鋅薄膜XRD分析 56
4.4氧化鋅薄膜EDS分析 59
第五章 結論與未來工作 61
5.1結論 61
5.1未來工作 61
附錄 62
參考文獻 63


[1]蕭偉志“太摻雜鋅錫氧化物薄膜電晶體”中正大學光機電整合工程所碩士論文
[2]http://www.materialsnet.com.tw/DocView.aspx?id=4889
[3]http://en.wikipedia.org/wiki/Sputter_deposition
[4]http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/sputter.htm
[5]www.phy.fju.edu.tw/~498598075/LAB/PH115/text/Sputter.doc
[6]http://www.chemj.cn/viewthread.php?tid=25416
[7]http://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%B1%82%E6%B2%89%E7%A7%AF
[8]郭子俊“奈米複合材料-溶膠凝膠製備方法”
[9]林景崎“奈米材料導論”
[10]P. F. Carcia,R. S. McLean, M. H. Reilly, and G. Nunes,“Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”APPL. PHYS. LETT.82 (2003) 1117
[11]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel,A. M. F. Gonçalves, A. J. S. Marques,R. F. P. Martins, and L. M.N. Pereira,“Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature”APPL. PHYS. LETT.85 (2004) 1541
[12]L. Zhang, H. Zhang, Y. Bai. , J. W. Ma, J. Cao,X. Y. Jiang , Z. L. Zhang“Enhanced performances of ZnO-TFT by improving surface properties of channel layer”SOLID. STATE. COMMUN.146 (2008) 387
[13]L. Zhang,J. Li, X.W. Zhang, D.B. Yu, H.P. Lin , Khizar-ul-Haq,X.Y. Jiang, Z.L. Zhang“The influence of the SiO2 deposition condition on the ZnO thin-film transistor performance”SUPERLATTICE. MICROST.48 (2010) 19
[14]R. Navamathavan, R. Nirmala, and C. R. Lee,“Effect of NH3 plasma treatment on the device performance of ZnO based thin film transistors”VACUUM.85 (2011) 904
[15]D. H. Levy,D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and Lyn M. Irving,“Stable ZnO thin film transistors by fast open air atomic layer deposition” APPL. PHYS. LETT.92 (2008) 192101
[16]S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang,C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im,“Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel”ADV. MATER.21 (2009) 678
[17]D. A. Mourey, D. A. Zhao,J. Sun, and T. N. Jackson,“Fast PEALD ZnO Thin-Film Transistor Circuits”IEEE. T. ELECTRON. DEV.75 (2010) 530
[18]S. Lee, S. Bang, J. Park, S. Park, W. Jeong, and H. Jeon,PHYS. STATUS. SOLIDI. A.207 (2010) 1845
[19]C. H. Ahn,C. HoWoo,S. Hwang,b J. Y. Lee,Hyung Koun Cho,H. J. Cho,and G. Y. Yeoma,Surf. Interface Anal.42 (2010) 955
[20]C.S.Li, Y.N. Li, Y. L. Wu, B. S Ong and R. O. Loutfy,“Performance improvement for solution-processed high-mobility ZnO thin-film transistors”J. Phys. D: Appl. Phys.41 (2008) 125102
[21]J. H. Jun, B. Park, K. Cho and S. Kim,“Flexible TFTs based on solution-processed ZnO nanoparticles”NANOTECHNOLOGY.20 (2009) 505201
[22]H. Bong, W. H. Lee, D. Y. Lee, B. J. Kim, J. H. Cho,and K. Cho,“High-mobility low-temperature ZnO transistors with low-voltage operation”APPL. PHYS. LETT.96(2010)192115
[23]S. T. Meyers, J. T. Anderson, C. M. Hung, J. Thompson,J. F. Wager, and Douglas A. Keszler,J. AM. CHEM. SOC.130 (2008) 17605
[24]C. Yang, K. Hong, J. Jang, D. S. Chung,T. K. An,W. S. Choi and C. E. Park,
NANOTECHNOLOGY.20 (2009) 465201
[25]C. Y. Lee, M Y Lin,W.H.Wu, J. Y. Wang, Y Chou, W. F. Su, Y. F. Chen and C. F. Lin,SEMICOND. SCI. TECH.25 (2010) 105008
[26]S. Lee , Y. Jeong , S. Jeong , J. Lee , M Jeon and J. Moona,SUPERLATTICE. MICROST.44 (2008) 761
[27]K. Okamura, N. Mechau, D. Nikolova, and H. Hahn,“Influence of interface roughness on the performance of nanoparticulate zinc oxide field-effect transistors”APPL. PHYS. LETT.93(2008)083105
[28]H. Faber, M. Burkhardt, A. Jedaa, D. Ka¨lblein,H. Klauk, and M. Halik,“Low-Temperature Solution-Processed Memory Transistors Based on Zinc Oxide Nanoparticles”ADV. MATER.21(2009)3099
[29]N. Mechau, S. Bubel, D. Nikolova, and H. Hahn,“Influence of stabilizers in ZnO
nano-dispersions on the performance of solution-processed FETs”PHYS. STATUS. SOLIDI. A.207(2010)1684
[30]S. Walther, S. Schäfer , M.P.M. Jank , H. Thiem , W. Peukert , L. Frey and H. Ryssel“Influence of annealing temperature and measurement ambient on TFTs based
on gas phase synthesized ZnO nanoparticles”MICROELECTRON. ENG.87 (2010) 2312
[31]B. S. Ong,C. Li, Y. Li, Y. Wu, and R.Loutfy,“Stable, Solution-Processed, High-Mobility ZnO Thin-Film Transistors”J. AM. CHEM. SOC.129(2007)2750
[32]H. Pan, N. Misra, S.H. Ko, C. P. Grigoropoulos, N. Miller, E. E. Haller and O. Dubon, “Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication,” Appl. Phys. A-Mater. 94 (2009) 111.
[33]K. Okamura, D. Nikolova, N. M. and H. Hahn,“Polymer stabilized ZnO nanoparticles for low-temperature and solutionprocessed
field-effect transistors”J. MATER. CHEM.20(2010)5651
[34]S. Jeong,L. Hu, H. R. Lee, E. Garnett,J. W. Choi,and Y. Cui,“Fast and Scalable Printing of Large Area Monolayer Nanoparticles for Nanotexturing Applications”NANO. LETT.10(2010)2989
[35]P. K. Nayak, J. Kim, C. Lee, and Y. Hong,“Performance of top-gate thin film
transistors with solution processed ZnO channel layer and PVP gate dielectric”
PHYS. STATUS. SOLIDI. A.207(2010)1664
[36] B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
[37] V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, and
M. Driess, Adv. Funct. Mater. 15, 1945 (2005).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔