跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴漢中
研究生(外文):Han Chung Lai
論文名稱:以共蒸鍍法製備銅銦鎵硒吸收層及光電池之研究
論文名稱(外文):The Preparation of Copper Indium Gallium Diselenide (CuInxGa1-xSe2) Photo Absorber Layers using Co-evaporation for Photovoltaic Application
指導教授:鄭光煒
指導教授(外文):K. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:119
中文關鍵詞:銅銦鎵硒共蒸鍍法太陽能電池
外文關鍵詞:CIGSCo-evaporationSolar cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用共蒸鍍法製備銅銦鎵金屬合金前驅物薄膜,再以退火
及 硒 化 的 方 式 , 於 玻 璃 或 銦 錫 氧 化 物 ( ITO ) 基 材 上 製 備 出
Cu-In-Ga-Se四元化合物半導體薄膜,並探討不同銅銦鎵比例對於薄
膜結構、光學性質、光電化學反應性質以及導電型態的影響。
由 X 光繞射分析儀(XRD)分析結果可知,於不同銅銦鎵比例
下,皆可製備出具黃銅礦結構的 CuIn 1-x Ga x Se 2 (x = 0~1)薄膜,
而由能量分散式 X 光元素分析儀(EDAX)分析結果與光學量測結
果可得知,隨著薄膜中鎵含量的增加或銅含量的減少,薄膜的直接能
隙會從1.28 eV 上升至 1.50 eV。薄膜厚度約為 1.8~4 µm之間。在光
電流密度量測中,將薄膜置於 0.35M之Na 2 S及0.25M之K 2 SO 3 混合之
水溶液可得到最高光敏化效果0.24 mA/cm
2 。在薄膜電性量測方面,
可發現隨著薄膜中銅含量的減少,載子濃度會下降,電阻率會上升,
而導電型態皆為p-type。
以glass/Mo/CIGS/CdS/IZO/AZO/Ag為結構製備光電池之開環電
壓為0.238 V,短路電流為 0.134 mA/cm
2
,光電轉換效率η為 0.01 %,
FF 值為 0.220。
In this study, the Cu-In-Ga-Se (CIGS) semiconductor
thin films were deposited on glass substrates and
indium-tin-oxide (ITO) coated glass substrates using
selenization of co-evaporated Cu-In-Ga metal alloys . The
effect of the Cu/(In+Ga) and Ga /(In+Ga) molar ratio in
Cu-In-Ga metal alloys on the structural, optical and
electrical properties of CIGS thin film were investigated.
X-ray diffraction pattern of samples ( XRD ) revealed
that samples in this study were chalcopyrite CIGS phase.
Energy dispersive analysis of X-ray ( EDAX ) showed that
compositions of CuIn 1-x Ga x Se 2 thin film were the function
of the Cu-In-Ga molar ratio in metal alloys. The
thickness of samples were in the range of 1.8 ~ 4 µm. The
direct energy band gap of samples varied from 1.28~ 1.50
eV, depending on Cu/(In+Ga) and Ga/(In+Ga) molar ratios
in samples. Maximum photocurrent density of samples
reached to 0.24 mA/cm
2
in the solution containing S
2-

and SO 3
2-
ions. The carrier concentration of samples varied
from 2.86 × 10
18
~ 3.82 × 10
12
cm
-3
using Hall measurement.
The resistivity of samples decreased with an increase in
Cu/(In+Ga) molar ratio in samples. The conduction type of
CuIn 1-x Ga x Se 2 thin films are all p-type.
Glass/Mo/CIGS/CdS/IZO/AZO/Ag solar cell gaved V OC
of 0.238 V, J SC of 0.134 mA/cm
2
, FF of 0.220, and
conversion efficiency of 0.01 %.
論文指導教授推薦書
論文口試委員會審定書
長庚大學博碩士論文著作授權書

目錄
致謝 ................................................................................................................ iv
摘要 .................................................................................................................. v
Abstract .......................................................................................................... vi
目錄 .............................................................................................................. viii
圖目錄 ............................................................................................................ xi
表目錄 ........................................................................................................ xviii
第一章 緒論.................................................................................................... 1
1.1 前言 ..................................................................................................... 1
1.2 研究目的 ............................................................................................. 2
第二章 理論與文獻回顧 ............................................................................... 5
2.1 半導體性質 ......................................................................................... 5
2.1.1 半導體能帶理論 ....................................................................... 6
2.1.2 費米能階 ................................................................................... 7
2.1.3 直接能隙與間接能隙 .............................................................. 8
2.2 太陽能電池理論 ................................................................................. 8
2.2.1 光電效應 ................................................................................... 9
2.2.2 p-n 接面 .................................................................................. 10
2.2.3 光伏效應 ................................................................................. 11
ix

2.2.4 常見的太陽能電池材料 ......................................................... 11
2.3 CuIn 1-x Ga x Se 2 ( CIGS ) 材料簡介 ............................................... 13
2.4 製備方法 ........................................................................................... 14
2.4.1 化學水浴沈積法 ..................................................................... 14
2.4.2 噴霧熱解法 ............................................................................. 14
2.4.3 塗布法 ..................................................................................... 15
2.4.4 電沈積法 ................................................................................. 15
2.4.5 分子束磊晶 ............................................................................ 16
2.4.6 濺鍍法 ..................................................................................... 16
2.4.7 共蒸鍍法 ................................................................................. 17
第三章 實驗.................................................................................................. 25
3.1 實驗藥品 ........................................................................................... 25
3.2 實驗儀器與設備 ............................................................................... 26
3.2.1 薄膜製程設備 ......................................................................... 26
3.2.2 分析儀器與設備 ..................................................................... 27
3. 3 實驗流程 .......................................................................................... 28
3.3.1 基材清洗 ................................................................................ 28
3.3.2 銅、銦、鎵預成薄膜比例計算 ............................................ 28
3.3.2 銅、銦、鎵預成薄膜比例計算 ............................................ 29
x

3.3.3 預成薄膜製備步驟 ................................................................ 29
3.3.4 金屬預成薄膜熱處理 ............................................................. 31
3.3.5 薄膜硒化 ................................................................................. 31
3. 4 薄膜性質分析 .................................................................................. 32
第四章 結果與討論 ..................................................................................... 39
4.1 薄膜晶型結構分析........................................................................... 39
4.2 薄膜元素分析 ................................................................................... 41
4.3 薄膜表面型態分析........................................................................... 43
4.4 膜厚分析 ........................................................................................... 44
4.5 薄膜光學性質分析........................................................................... 44
4.6 薄膜電性量測 ................................................................................... 47
4.7 光電流密度量測 ............................................................................... 48
4.8 CuIn 1-x Ga x Se 2 太陽能電池............................................................... 49
第五章 結論與未來展望 ........................................................................... 93
參考文獻 ........................................................................................................ 95



xi

圖目錄
圖 1-1、1999~2007 年全球各國太陽能電池之裝置容量 ......................... 4
圖 2-1、導體、半導體、絕緣體等固體材料電導率(電阻率)範圍 ......... 20
圖 2-2、n 型半導體電子移動示意圖 ......................................................... 20
圖 2-3、p 型半導體電洞移動示意圖 ......................................................... 21
圖 2-4、分子軌域混成示意圖 .................................................................... 21
圖 2-5、費米能階(E F )於 n 型和 p 型半導體中之位置 ........................ 22
圖 2-6、(a)直接能隙與(b)間接能隙 E-k 關係圖 ............................ 22
圖 2-7、p-n 接面之空間電荷區 .................................................................. 23
圖 2-8、2001 年各種太陽能電池材料之市場分佈率 ............................... 23
圖 2-9、黃銅礦結構 .................................................................................... 24
圖 2-10、共蒸鍍製程設備示意圖 .............................................................. 24
圖 3-1、熱蒸鍍機示意圖 ............................................................................ 33
圖 3-2、光電化學反應裝置圖 .................................................................... 34
圖 3-3、實驗流程圖 .................................................................................... 35
圖 4-1、銅銦鎵硒合金相圖 ........................................................................ 52
圖 4-2、溫度 150℃、225℃退火 30 分鐘,溫度 500℃、550℃硒化
30 分鐘之 XRD 圖 ........................................................................................ 52

xii

圖 4-3、溫度 250℃退火 30 分鐘,溫度 500℃、550℃硒化 30 分鐘之
XRD 圖 ......................................................................................................... 53
圖 4-4、溫度 250℃退火,溫度 550℃硒化不同時間之 XRD 圖 .......... 53
圖 4-5、溫度 150℃、250℃退火 30 分鐘,溫度 500℃、550℃硒化 60
分鐘之 XRD 圖 ........................................................................................... 54
圖 4-6、不同銅比例之 XRD 圖 ................................................................... 54
圖 4-7、不同鎵比例之 XRD 圖 ................................................................... 55
圖 4-8、不同銅理論比例對 EDAX 分析所得之銅比例作圖 .................. 55
圖 4-9、不同鎵理論比例對 EDAX 分析所得之鎵比例作圖 .................. 56
圖 4-10、Sample(C1)(Cu/In+Ga EDAX 比例為 1.01)之 SEM 表
面圖。 ............................................................................................................ 56
圖 4-11、Sample(C2)(Cu/In+Ga EDAX 比例為 0.96)之 SEM 表
面圖。 ............................................................................................................ 57
圖 4-12、Sample(C3)(Cu/In+Ga EDAX 比例為 0.75)之 SEM 表
面圖 ................................................................................................................ 57
圖 4-13、Sample(C4)(Cu/In+Ga EDAX 比例為 0.71)之 SEM 表
面圖 ................................................................................................................ 58
圖 4-14、Sample(C5)(Cu/In+Ga EDAX 比例為 0.58)之 SEM 表
面圖 ................................................................................................................ 58
xiii

圖 4-15、Sample(C6)(Cu/In+Ga EDAX 比例為 0.50)之 SEM 表
面圖 ................................................................................................................ 59
圖 4-16、Sample(C7)(Cu/In+Ga EDAX 比例為 0.48)之 SEM 表
面圖 ................................................................................................................ 59
圖 4-17、Sample(C1)(Cu/In+Ga EDAX 比例為 1.01)之 SEM 側
面圖 ................................................................................................................ 60
圖 4-18、Sample(C2)(Cu/In+Ga EDAX 比例為 0.96)之 SEM 側
面圖 ................................................................................................................ 60
圖 4-19、Sample(C3)(Cu/In+Ga EDAX 比例為 0.75)之 SEM 側
面圖 ................................................................................................................ 61
圖 4-20、Sample(C4)(Cu/In+Ga EDAX 比例為 0.71)之 SEM 側
面圖 ................................................................................................................ 61
圖 4-21、Sample(C5)(Cu/In+Ga EDAX 比例為 0.58)之 SEM 側
面圖 ................................................................................................................ 62
圖 4-22、Sample(C6)(Cu/In+Ga EDAX 比例為 0.50)之 SEM 側
面圖 ................................................................................................................ 62
圖 4-23、Sample(C7)(Cu/In+Ga EDAX 比例為 0.48)之 SEM 側
面圖 ................................................................................................................ 63

xiv

圖 4-24、Sample(G1)(Ga/In+Ga EDAX 比例為 0.43)之 SEM 表
面圖 ................................................................................................................ 63
圖 4-25、Sample(G2)(Ga/In+Ga EDAX 比例為 0.35)之 SEM 表
面圖 ................................................................................................................ 64
圖 4-26、Sample(G3)(Ga/In+Ga EDAX 比例為 0.30)之 SEM 表
面圖 ................................................................................................................ 64
圖 4-27、Sample(G4)(Ga/In+Ga EDAX 比例為 0.23)之 SEM 表
面圖 ................................................................................................................ 65
圖 4-28、Sample(G5)(Ga/In+Ga EDAX 比例為 0.19)之 SEM 表
面圖 ................................................................................................................ 65
圖 4-29、Sample(G1)(Ga/In+Ga EDAX 比例為 0.43)之 SEM 側
面圖 ................................................................................................................ 66
圖 4-30、Sample(G2)(Ga/In+Ga EDAX 比例為 0.35)之 SEM 側
面圖 ................................................................................................................ 66
圖 4-31、Sample(G3)(Ga/In+Ga EDAX 比例為 0.30)之 SEM 側
面圖 ................................................................................................................ 67
圖 4-32、Sample(G4)(Ga/In+Ga EDAX 比例為 0.23)之 SEM 側
面圖 ................................................................................................................ 67

xv

圖 4-33、Sample(G5)(Ga/In+Ga EDAX 比例為 0.19)之 SEM 側
面圖 ................................................................................................................ 68
圖 4-34、不同銅比例(Cu/In+Ga 理論比例 0.41~97)之 CuIn 1-x Ga x Se 2
薄膜穿透率圖譜 ........................................................................................... 68
圖 4-35、不同鎵比例(Ga/In+Ga 理論比例 0.23~54)之 CuIn 1-x Ga x Se 2
薄膜穿透率圖譜 ........................................................................................... 69
圖 4-36、不同銅比例(Cu/In+Ga 理論比例 0.41~97)之 CuIn 1-x Ga x Se 2
薄膜反射率圖譜 ........................................................................................... 69
圖 4-37、不同鎵比例(Ga/In+Ga 理論比例 0.23~54)之 CuIn 1-x Ga x Se 2
薄膜反射率圖譜 ........................................................................................... 70
圖 4-38、不同銅比例(Cu/In+Ga 理論比例 0.41~97)之 CuIn 1-x Ga x Se 2
薄膜 (αhν)
2
vs. hν 圖 .................................................................................... 70
圖 4-39、薄膜中 Cu/In+Ga 比例與能隙之關係圖 ................................... 71
圖 4-40、不同鎵比例(Gu/In+Ga 理論比例 0.23~54)之 CuIn 1-x Ga x Se 2
薄膜 (αhν)
2
vs. hν 圖 .................................................................................... 71
圖 4-41、薄膜中 Ga/In+Ga 比例與能隙之關係圖 ................................... 72
圖 4-42、CuIn 1-x Ga x Se 2 薄膜其 Cu/In+Ga 比例對載子濃度及電阻率作
圖 .................................................................................................................... 72

xvi

圖 4-43、CuIn 1-x Ga x Se 2 薄膜其 Ga/In+Ga 比例對載子濃度及電阻率
作圖 ................................................................................................................ 73
圖 4-44、Sample(C1)(Cu/In+Ga EDAX 比例為 1.01))的光敏化
效應量測圖 .................................................................................................... 73
圖 4-45、Sample(C2)(Cu/In+Ga EDAX 比例為 0.96))的光敏化
效應量測圖 .................................................................................................... 74
圖 4-46、Sample(C3)(Cu/In+Ga EDAX 比例為 0.75)的光敏化效
應量測圖 ........................................................................................................ 74
圖 4-47、Sample(C4)(Cu/In+Ga EDAX 比例為 0.71)的光敏化效
應量測圖 ........................................................................................................ 75
圖 4-48、Sample(C5)(Cu/In+Ga EDAX 比例為 1.01))的光敏化
效應量測圖 .................................................................................................... 75
圖 4-49、Sample(C6)(Cu/In+Ga EDAX 比例為 0.50)的光敏化效
應量測圖 ........................................................................................................ 76
圖 4-50、Sample(C7)(Cu/In+Ga EDAX 比例為 0.48)的光敏化效
應量測圖 ........................................................................................................ 76
圖 4-51、Sample(G1)(Ga/In+Ga EDAX 比例為 0.43)的光敏化
效應量測圖 .................................................................................................... 77
圖 4-52、Sample(G2)(Ga/In+Ga EDAX 比例為 0.35)的光敏化
xvii

效應量測圖 .................................................................................................... 77
圖 4-53、Sample(G3)(Ga/In+Ga EDAX 比例為 0.30)的光敏化
效應量測圖 .................................................................................................... 78
圖 4-54、Sample(G4)(Ga/In+Ga EDAX 比例為 0.23)的光敏化
效應量測圖 .................................................................................................... 78
圖 4-55、Sample(G5)(Ga/In+Ga EDAX 比例為 0.19)的光敏化
效應量測圖 .................................................................................................... 79
圖 4-56 、 glass/Mo/CIGS/CdS(In 2 S 3 )/IZO/AZO/Ag 光 電 池 模 組 結
構圖 ................................................................................................................ 79
圖 4-57、glass/Mo/CIGS/CdS(In 2 S 3 )/IZO/AZO/Ag 太陽能電池模組裝
置圖 ................................................................................................................ 80
圖 4-58、glass/Mo/G2/ CdS /IZO/AZO/Ag 太陽能電池模組效率量測圖
........................................................................................................................ 80
圖 4-59、glass/Mo/G3/In 2 S 3 /IZO/AZO/Ag 太陽能電池模組效率量測
圖 .................................................................................................................... 81
圖 4-60、glass/Mo/G4/In 2 S 3 /IZO/AZO/Al/Ni 太陽能電池模組效率量
測圖 ................................................................................................................ 81
圖 4-61、glass/Mo/G5/In 2 S 3 /IZO/AZO/ Al/Ni 太陽能電池模組效率量
測圖 ................................................................................................................ 81
xviii

表目錄
表 3-1、改變不同退火及硒化溫度及時間參數表 .................................... 36
表 3-2、改變銅比例之共蒸鍍源銅銦鎵金屬質量參數表 ........................ 37
表 3-3、改變銦鎵比例之共蒸鍍源銅銦鎵金屬質量參數表 .................... 38
表 4-1、不同退火及硒化參數 XRD 晶相分析整理表 ............................. 82
表 4-2、不同銅比例下,退火前之銅銦鎵金屬薄膜元素分析表 ............ 83
表 4-3、不同銅比例下,硒化後之 CuIn 1-x Ga x Se 2 薄膜元素分析表 .... 84
表 4-4、不同鎵比例下,退火前之鎵成分元素分析表 ............................ 85
表 4-5、不同鎵比例下,硒化後之 CuIn 1-x Ga x Se 2 薄膜元素分析表 .... 86
表 4-6、不同銅比例之 CuIn 1-x Ga x Se 2 薄膜其厚度與直接能隙值 ...... 87
表 4-7、不同鎵比例之 CuIn 1-x Ga x Se 2 薄膜其厚度與直接能隙值 ...... 88
表 4-8、不同銅比例下之 CuIn 1-x Ga x Se 2 薄膜其霍爾量測數據表 ........ 89
表 4-9、不同鎵比例下之 CuIn 1-x Ga x Se 2 薄膜其霍爾量測數據表 ........ 90
表 4-10、不同銅比例之 CuIn 1-x Ga x Se 2 薄膜之光敏化效果 ................ 91
表 4-11、不同鎵比例之 CuIn 1-x Ga x Se 2 薄膜之光敏化效果 ................ 92
95

參考文獻
[1] 黃惠良,蕭錫鍊,周明奇等著,《太陽電池》,初版,五南出版社,
2008。
[2] J. Willliam , D. Callister , " Materials Science and Engineering. " John
Wiley & Sons , 2007.
[3] M. R. Hoffmann , W. Choi, and D. W. Bahnemann , " Environmental
applications of semiconductor photocatalysis. " Chemical Reviews ,
69-96 , 1995.
[4] C. Kittle , " Introduction to Solid State Physics. " John Wiley & Sons
New York , 2005.
[5] C. S. Fuller , D. M. Chapin , and G. L. Pearson , " A new silicon p-n
junction photocell for converting solar radiation into electrical
power. " Journal of Applied Physics , 25, 676-677 , 1954.
[6] 楊德仁著,《太陽能電池材料》,初版,五南出版社,2008。
[7] B. Lipovšek , J. Krþ , M. Topiþ , " Potential of advanced optical
concepts in chalcopyrite-based solar cells " Energy Procedia 2,
143–150 , 2010.
[8] R. N. Bhattacharya , W. Batchelor , K. Ramanathan , M. A. Contreras
and T. Moriarty , " The performance of CuIn 1−x Ga x Se 2 based
photovoltaic cells prepared from low-costprecursor films " Sol.
Energy Mater. Sol. Cells , 63- 367, 2000.



96

[9] B. J. Babu , A. M. Acevedo , R. Asomoza , " Properties of
CuInGaSe Thin Films Prepared by Chemical Spray Pyrolysis " 2010
7
th
International Conference on Electrical Engineering , Computing
Science and Automatic Control , September 8-10 , 2010.
[10] S. Park , D. Y. Lee, J. H. Kim , " Structural analysis of CIGS film
prepared by chemical spray deposition. " Current Applied Physics ,
11 , S88-S92 , 2011.
[11] K. Deyi , L. Ying , " Preparation of Cu(In,Ga)Se 2 thin film by
non-vacuum mechanochemical and spin-coating process. "
IEEE , 978-1-4244-6255-1 , 2011.
[12] D. B. Mitzi , M. Yuan, W. Liu, A. J. Kellock , S. J. Chey , L.
Gignac , A. G. Schrott, " Hydrazine-based deposition route for
device-quality CIGS films. " Thin Solid Films , 517 , 2158–2162 ,
2009.
[13] M. MatsubayashiY. Oda , T. Minemoto , H. Takakura , " Fabrication
of Cu(In, Ga)Se 2 thin film solar cell absorbers from electrodeposited
bilayers. " Current Applied Physics , 10 , S146–S149 , 2010.
[14] F. Kang , J. Ao, G. Sun , Q. He , and Y. Sun , " Properties of
CuIn 1-x Ga x Se 2 thin films grown from electrodeposited precursors
with different levels of selenium content. " Current Applied Physics ,
10 , 886–888 , 2010.
[15] M. M. Islam , T. Sakurai , S. Ishizuka , A. Yamada , H. Shibata , K.
Sakurai , K. Matsubara , K. Akimoto , " Effect of Se/(Ga+In) ratio
on MBE grown Cu(In,Ga)Se 2 thin film solar cell. " Journal of
Crystal Growth , 311 , 2212–2214 , 2009.

97

[16] Y. Lin , J. Ke , W. Yen , S. Liang , C. Wu , C. Chiang , " Preparation
and characterization of Cu(In,Ga)(Se,S) 2 films without selenization by
co-sputtering from Cu(In,Ga)Se 2 quaternary and In 2 S 3 targets. "
Applied Surface Science , 257 , 4278–4284 , 2011.
[17] A. M. Hermann , M. Mansour , V. Badri , B. Pinkhasov , C.
Gonzales , F. Fickett , M. E. Calixto , P. J. Sebastian , C. H. Marshall ,
T. J. Gillespie , " Deposition of smooth Cu(In,Ga)Se 2 films from
binary multilayers. " Thin Solid Films , 361-362 , 74-78 , 2000.
[18] S. Seike , K. Shiosaki , M. Kuramoto , H. Komaki , K. Matsubara , H.
Shibata , S. Ishizuka , A. Yamada and S. Niki, " Development of
high-efficiency CIGS integrated submodules using in-line deposition
technology." Solar Energy Materials and Solar Cells, 95 (1),
254-256, 2011.
[19] N. G. Dhere , " Scale-up issues of CIGS thin film PV modules. "
Solar Energy Materials & Solar Cells , 95 , 277–280 , 2011.
[20] P. M. P. Salomé , P. A. Fernandes , and A. F. Cunha , " Influence of
selenization pressure on the growth of Cu 2 ZnSnSe 4 films from
stacked metallic layers " Phys. Status Solidi, C 7, No. 3–4, 913–916,
2010.
[21] S. Park , S. Lee , E. Lee , S. Park , W. Kim , S. Lee, W. Lee , B. Lee ,
H. Bae , J. Yoo , C. Jeon , " Investigation of ZnO/CdS/CuIn 1-x Ga x Se 2
interface reaction by using hot-stage TEM. " Current Applied Physics ,
S399–S401 , 2010.



98

[22] JCPDS No. 40-488, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[23] JCPDS No. 79-2208, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[24] JCPDS No. 76-975, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[25] JCPDS No. 51-1223, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[26] 顧鴻濤,《太陽能電池原件導論, 初版,全威圖書有限公司, 2008.
[27] R. Sakdanuphab , C. Chityuttakan , A. Pankiew , N. Somwang , K.
Yoodee , S. Chatraphorn , " Growth characteristics of Cu(In,Ga)Se 2
thin films using 3-stage deposition process with a NaF precursor. "
Journal of Crystal Growth , 319 , 44–48, 2011.
[28] JCPDS No. 6-680, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[29] JCPDS No. 81-903, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[30] JCPDS No. 48-1575, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[31] JCPDS No. 33-568, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[32] JCPDS No. 71-44, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[33] JCPDS No. 27-185, Joint Committee on Powder
Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
99

[34] T. Hsieh , C. Chuang , C. Wu , J. Chang , J. Guo , W. Chen , " Effects
of residual copper selenide on CuInGaSe 2 solar cells." Solid-State
Electronics , 56(1) , 175-178, 2011.
[35] M. Edoff, S. Schleussner , E. Wallin and O. Lundberg, "
Technological and economical aspects on the influence of reduced
Cu(In,Ga)Se 2 thickness and Ga grading for co-evaporated
Cu(In,Ga)Se 2 modules. " Thin Solid Films In Press , Corrected
Proof , 2005.
[36] E. Wallin, T. Jarmar, U. Malm, M. Edoff and L. Stolt, " Influence
of the average Se-to-metal overpressure during co-evaporation of
Cu(In x Ga 1-x )Se 2 ." Thin Solid Films In Press , Corrected Proof, 2011.
[37] S. Seyrling, A. Chirila, D. Güttler, F. Pianezzi , P. Rossbach, A. N.
Tiwari, " Modification of the three-stage evaporation process for
CuIn 1-x Ga x Se 2 absorber deposition. " Thin Solid Films In Press ,
Corrected Proof , 2011.
[38] S. Seyrling, A. Chirila, D. Guttler , P. Blosch, F. Pianezzi, R. Verma ,
S. Bucheler , S. Nishiwaki , P. Rossbach , Y. E. Romanyuk , A. N.
Tiwari , " CuIn 1-x Ga x Se 2 growth process modifications : Influences on
microstructure, Na distribution, and device properties." Solar Energy
Materials & Solar Cells, 95, 1477–1481, 2011.






100

[39] Z. Jehl, F. Erfurth, N. Naghavi, L. Lombez, I. Gerard, M. Bouttemy,
P. Tran-Van, A. Etcheberry, G. Voorwinden, B. Dimmler , W.
Wischmann, M. Powalla, J. F. Guillemoles and D. Lincot, " Thinning
of CIGS solar cells : Part II: Cell characterizations. " Thin Solid
Films In Press , Corrected Proof.
[40] J. I. Pankove, " Optical processes in semiconductors " , Courier
Dover Publications ", 1975.
[41] U. N. Maiti , R. Maity, M. K. Mitra , K. K. Chattopadhyay,
"Synthesis and optical characterization of polymer-capped
nanocrystalline ZnS thin films by chemical process , Physica E:
Low-dimensional Systems and Nanostructures , 33, 104-109, 2006 .
[42] W. L. Wang, H. Lin, J. Zhang , X. Li , A. Yamada , M. Konagai and J.
B. Li , " Experimental and simulation analysis of the dye sensitized
solar cell/Cu(In,Ga)Se 2 solar cell tandem structure. " Solar Energy
Materials and Solar Cells, 94 (10), 1753-1758, 2010.
[43] J. Serhan, Z. Djebbour , D. Mencaraglia , F. Couzinié-Devy , N.
Barreau and J. Kessler, " Influence of Ga content on defects in
CuIn x Ga 1 - x Se 2 based solar cell absorbers investigated by sub gap
modulated photocurrent and admittance spectroscopy. " Thin Solid
Films In Press , Corrected Proof , 2011.
[44] M. L. Fearheiley," The phase-relations in the Cu,In,Se system and
the growth of CuInSe 2 single-crystals"Sol. Cells, 16, pp. 91-100 ,
1986.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊