|
[1] http://www.daytondailynews.com/lifestyle/ohio-health-news/as- aging-population-grows-health-care-adapts-1091152.html?cxtype=rss_health [2] http://apps.who.int/ghodata/ [3] http://www.taiwantrade.com.tw/MAIN/en_front/searchserv.do? method= listNews Detail&information_id=7738&locale=8 [4] http://www.sensorsmag.com/specialty-markets/medical/news/ sensor- integration- medical-devices-growing-8369 [5] http://www.sensorsmag.com/specialty-markets/medical/sensors- facilitate- health- monitoring-8365 [6] C.R. Lowe, “Biosensors”, Trends Biotechnol., 2 (3), pp. 59–65, 1984. [7] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors - sensor principles and architectures”, Sensors, 8, pp. 1400–1458, 2008. [8] M.J. Schöning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs)”, Analyst, 127, pp. 1137–1151, 2002. [9] D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, “Electrochemical biosensors: recommended definitions and classification”, Pure Appl. Chem., 71 (12), pp. 2333–2348, 1999. [10] D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, “Electrochemical biosensors: recommended definitions and classification”, Biosens. Bioelectron., 16 (1-2), pp. 121–131, 2001. [11] M. Yuqing, G. Jianguo, and C. Jianrong, “Ion sensitive field effect transducer-based biosensors”, Biotechnol. Adv., 21, pp. 527–534, 2003. [12] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng., 17, pp. 70–71, 1970. [13] M. Chudy, W. Wróblewski, A. Dybko, and Z. Brzózka, “Multi-ion analysis based on versatile sensor head”, Sens. Actuators B, 78, pp. 320–325, 2001. [14] C. Jiménez, I. Marqués, and J. Bartolí, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors”, Anal. Chem., 68, pp. 3801–3807, 1996. [15] K. Tsukada, Y. Miyahara, Y. Shibata and H. Miyagi, “An integrated chemical sensor with multiple ion and gas sensors“, Sens. Actuators B, 2, pp. 291–295, 1990. [16] W. Moritz, F. Lisdat, B.H. van der Schoot, N.F. de Rooij, H.H. van der Vlekkert, H.C.G. Ligtenberg, and I. Grohmann, “Flow injection analysis using pH/pF ISFET combinations for determination of very low fluoride concentrations”, Sens. Actuators B, 15–16, pp. 223–227, 1993. [17] Z. Elbhiri, Y. Chevalier, J. M. Chovelon and N. Jaffrezic-Renault, “Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors”, Talanta, 52, pp. 495–507, 2000. [18] J. Janata and S. Moss, “Chemically sensitive field-effect transistors”, Biomed. Eng., 11, pp. 241–245, 1976. [19] S. Caras and J. Janata, “Field effect transistor sensitive to penicillin”, Anal. Chem., 52, pp. 1935–1937, 1980. [20] J.F. Schenck, > in Theory, Design and Biomedical Applications of Solid State Chemical Sensors, ed. P. W. Cheung, CRC Press, Boca Raton, pp. 165–173, 1978. [21] D.T. Jobling, J.G. Smith, and H.V. Wheal, “Active microelectrode array to record from the mammalian central nervous systemin vitro”, Med. Biol. Eng. Comput., 19, pp. 553–560, 1981. [22] P. Fromherz, A. Offenhäusser, T. Vetter, and J. Weis, “A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor”, Science, 252, pp. 1290–1293, 1991. [23] S. Schütz, B. Weissbecker, H.E. Hummel, M.J. Schöning, A. Riemer, P. Kordos and H. Lüth, “Host plant selection of the colorado potato beetle as influenced by damage induced volatiles of the potato plant”, Naturwissenschaften, 84, pp. 86–88, 1997. [24] E. Souteyrand, J.P. Cloarec, J.R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen and M.F. Lawrence,” Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect”, J. Phys. Chem. B, 101, pp. 2980–2985, 1997. [25] M.J. Schöning and A. Poghossian, “Bio FEDs (field-effect devices): state-of-the-art and new directions”, Electroanalysis, 18(19-20), pp. 1893–1900, 2006. [26] W. Sant, M.L. Pourciel, J. Launay, T. Do Conto, A. Martinez, and P. Temple-Boyer, “Development of chemical field effect transistors for the detection of urea”, Sens. Actuators B, 95, pp. 309–314, 2003. [27] K.Y. Park, S.B. Choi, M. Lee, B.K. Sohn, and S.Y. Choi, “ISFET glucose sensor system with fast recovery characteristics by employing electrolysis”, Sens. Actuators B, 83, pp. 90–97, 2002. [28] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, K.P. Hsiung, and S.K. Hsiung, “Glucose ENFET doped with MnO2 powder ”, Sens. Actuators B, 76, pp. 187–192, 2001. [29] X.L. Luo, J.J. Xu, W. Zhao, and H.Y. Chen, “A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles”, Biosens. Bioelectron., 19, pp. 1295–1300, 2004. [30] X.L. Luo, J.J. Xu, W. Zhao, and H.Y. Chen, “Glucose biosensor based on ENFET doped with SiO2 nanoparticles”, Sens. Actuators B, 97, pp. 249–255, 2004. [31] A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M.J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?”, Sens. Actuators B, 78, pp. 237–242, 2001. [32] W. Sant, M.L. Pourciel-Gouzy, J. Launay, T. Do Conto, R. Colin, A. Martinez, and P. Temple-Boyer, “Development of a creatinine-sensitive sensor for medical analysis”, Sens. Actuators B, 103, pp. 260–264, 2004. [33] A.P. Soldatkin, V.N. Arkhypova, S.V. Dzyadevych, A.V. ElNskaya, J.M. Gravoueille, N. Jaffrezic-Renault, and C. Martelet, “Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs”, Talanta, 66, pp. 28–33, 2005. [34] A.L. Simonian, A.W. Flounders, and J.R. Wild, “FET-based biosensors for the direct detection of organophosphate neurotoxins”, Electroanalysis, 16, pp. 1896–1906, 2004. [35] A.L. Simonian, J.K. Grimsley, A.W. Flounders, J.S. Schoeniger, T.C. Cheng, J.J. De Frank, and J.R. Wild, “Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates”, Anal. Chim. Acta, 442, pp. 15–23, 2001. [36] S.V. Dzyadevych, T.M. Anh, A.P. Soldatkin, N.D. Chien, N. Jaffrezic-Renault, and J.M. Chovelon, “Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds”, Bioelectrochemistry, 55, pp. 79–81, 2002. [37] V.M. Starodub and N.F. Starodub, “Electrochemical immune sensors based on the ion-selective field effect transistor for the determination of the level of myoglobin. In: M. Bartek, Editor”, The 13th European Conference on Solid-State Transducers, pp. 185–188, Delft University of Technology, The Hague (The Netherlands), September 12–15, 1999. [38] F. Hafner, “Cytosensor® Microphysiometer: technology and recent applications”, Biosens. Bioelectron., 15, pp. 149–158, 2000. [39] P. Bergveld, “Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology”, IEEE Trans. Biomed. Eng., 19, pp. 342–351, 1972. [40] A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection”, Sens. Actuators B, 32, pp. 41–48, 1996. [41] A. Poghossian and M.J. Schöning, “Detecting both physical and (bio-)chemical parameters by means of ISFET devices”, Electroanalysis, 16 (22), pp. 1863–1872, 2004. [42] H.H. van den Vlekkert, U.H. Verkerk, P.D. van der Wal, A. van Wingerden, D.N. Reinhoudt, J.R. Haak, G.W.N. Honig, and H.A.J. Holterman, “Multiion sensing device for horticultural application based upon chemical modification and special packaging of ISFETs”, Sens Actuators B, 6, pp. 34–37, 1992. [43] V. Volotovsky and N. Kim, “Determination of glucose, ascorbic and citric acids by two-ISFET multienzyme sensor”, Sens. Actuators B, 49, pp. 253–257, 1998. [44] A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz and I. Willner, “Enzyme monolayer-functionalized field-effect transistors for biosensor applications”, Sens. Actuators B, 70, pp. 222–231, 2000. [45] A. Offenhäusser and W. Knoll, “Cell-transistor hybrid systems and their potential applications”, Trends Biotechnol., 19, pp. 62–66, 2001. [46] http://www.intel.com/technology/silicon/45nm_technology.htm [47] W.-Y. Chung, C.-H. Yang, D.G. Pijanowska, A. Krzyskow, and W. Torbicz, “ISFET interface circuit embedded with noise rejection capability”, Electron. Lett., 40, pp. 1115–1116, 2004. [48] M.J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoš, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sens. Actuators B, 35, pp. 228–233, 1996. [49] J.C. Chou and Y.F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method”, Sens. Actuators B, 86, pp. 58–62, 2002. [50] S. Jamasb, S. Collins, and R.L. Smith, “A physical model for drift in pH ISFETs”, Sens. Actuators B, 49, pp. 146–155, 1998. [51] T. Mikolajick, R. Kuhnhold, and H. Ryssel, The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition, Sens. Actuators B, 44, pp. 262–267, 1997. [52] Y.-H. Liao and J.-C. Chou, “Drift and hysteresis characteristics of drug sensors based on ruthenium dioxide membrane”, Sensors, 8, pp. 5386–5396, 2008. [53] P. Woias, L. Meixner, and P. Frostl, ‘‘Slow pH response effects of silicon nitride ISFET sensors,’’ Sens. Actuators B, 48, pp. 501–504, 1998. [54] L. Bousse and P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators, 6, pp. 65–78, 1984. [55] J.-C. Chou and C.-Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET”, Mater. Chem. Phys., 71, pp. 120–124, 2001. [56] Y. Umezawa, K. Umezawa, and H. Sato, “Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KpotA,B values”, Pure & Appl. Chern., 67 (3), pp. 507–518, 1995. [57] N.H. Chou and J.C. Chou, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sensors J., 5 (6), pp. 1362–1368, 2005. [58] D.N. Reinhoudt, J.F.J. Engbersen, Z. Brzózka, H.H. van den Vlekkert, G.W.N. Honig, H.A.J. Holterman, and U.H. Verkerk, “Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes”, Anal. Chem., 66, pp. 3618–3623, 1994. [59] J. Wolstenholme and J.F. Watts, “An introduction to surface analysis by XPS and AES”, New York, Wiley, 2003. [60] http://www.veeco.com/ [61] T. Matsuo, M. Esahi, and H. Abe, “pH ISFET using Al2O3, Si3N4 and SiO2 gate thin films”, IEEE Trans. Electron Devices, ED-26, pp. 1856–1857, 1979. [62] C.G. Jakobson, U. Dinnar, M. Feinsod, Y. Nemirovsky, “Ion-sensitive field-effect transistors in standard CMOS fabricated by post processing”, IEEE Sensors J., 2, pp. 279–286, 2002. [63] T. Mikolajick, R. Kuhnhold, and H. Ryssel, “The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition, Sens. Actuators B, 44, pp. 262–267, 1997. [64] C.N. Tsai, J.C. Chou, T.P. Sun, and S.K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode”, Sens. Actuators B, 108, pp. 877–882, 2005. [65] Y.H. Liao and J.C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sens. Actuators B, 128, pp. 603–612, 2008. [66] http://www.itrs.net/Links/2010ITRS/Home2010.htm [67] J.C. Wang, D.C. Shie, T.F. Lei, and C.L. Lee, “Turnaround of hysteresis for capacitance-voltage characteristics of hafnium oxynitride dielectrics”, Appl. Phys. Lett., 84, pp. 1531–1533, 2004. [68] J. Robertson, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys., 28, pp. 265–291, 2004. [69] B.H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J.C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Appl. Phys. Lett., 76, pp. 1926–1928, 2000. [70] B. Cheng, M. Cao, R. Rao, A. Inain, P.V. Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, P.M. Zeitzoff, and J.C.S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs”, IEEE Trans. Electron Devices, 46, pp. 1537–1544, 1999. [71] J. Robertson, “Band offsets of high dielectric constant gate oxides on silicon”, J. Non-Cryst. Solids, 303, pp. 94–100, 2002. [72] K.L. Ng, N. Zhan, C.W. Kok, M.C. Poon, and H. Wong, “Electrical characterization of the hafnium oxide prepared by direct sputtering of Hf in oxygen with rapid thermal annealing”, Microelectron. Reliab., 43, pp. 1289–1293, 2003. [73] S.-W. Nam, J.-H. Yoo, S. Nam, H.-J. Choi, D. Lee, D.-H. Ko, J. H. Moon, J.-H. Ku, and S. Choi, “Influence of annealing condition on the properties of sputtered hafnium oxide”, J. Non-Cryst. Solids, 303, pp. 139–143, 2002. [74] R.M. Wallace and G. Wilk, “High-κ gate dielectric materials”, MRS Bull., 27 (3), pp. 192–197, 2002. [75] P. Raghu, N. Rana, C. Yim, E. Shero, and F. Shadman, “Adsorption of moisture and organic contaminants on hafnium oxide, zirconium oxide, andsilicon oxide gate dielectrics”, J. Electrochem. Soc., 150, F186–F193, 2003. [76] C.H. Choi, S.J. Rhee, T.S. Jeon, N. Lu, J.H. Sim, R. Clark, M. Niwa, and D.L. Kwong, “Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode”, Tech. Dig. - Int. Electron Devices Meet., pp. 857–860, 2002. [77] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M.N. Semeria, Y. Morand, J.F. Damlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P. Leduc, M. Rivoire, S. Jullian, and R. Pantel, “High performance 40 nm nMOSFETs with HfO2 gate dielectric and polysilicon damascene gate”, Tech. Dig. - Int. Electron Devices Meet., pp. 429–432, 2002. [78] M. Koyama, A. Kaneko, T. Ino, M. Koike, Y. Kamata, R. Iijima, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, S. Inumiya, M. Takayanagi, and A. Nishiyama, “Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics”, Tech. Dig. - Int. Electron Devices Meet., pp. 849–852, 2002. [79] W.J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T.P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Device Lett., 23, pp. 649–651, 2002. [80] Y.S. Lin, R. Puthenkovilakam, and J.P. Chang, “Dielectric property and thermal stability of HfO2 on silicon”, Appl. Phys. Lett., 81 (11), pp. 2041–2043, 2002. [81] W.C. Lee, Y.J. Lee, Y.D. Wu, P. Chang, Y.L. Huang, Y.L. Hsu, J.P. Mannaerts, R.L. Lo, F.R. Chen, S. Maikap, L.S. Lee, W.Y. Hsieh, M.J. Tsai, S.Y. Lin, T. Gustffson, M. Hong, J. Kwo, “MBE-grown high k gate dielectrics of HfO2 and (Hf–Al)O2 for Si and III–V semiconductors nano-electronics”, J. Cryst. Growth, 278, pp. 619–623, 2005. [82] S. Lee and D.L. Kwong, “Dual poly-Si gate metal oxide semiconductor field effect transistors fabricated with high-quality chemical vapor deposition HfO2 gate dielectrics”, Jpn. J. Appl. Phys., 42, pp. 7256–7258, 2003. [83] H. Gr¨uger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing”, Thin Solid Films, 447/448, pp. 509–515, 2004. [84] S. Nam, S.W. Nam, J.H. Yoo, D.H. Ko, “Interface control by modified sputtering on Pt/HfO2/Si system”, Mater. Sci. Eng. B, 102, pp. 123–127, 2003. [85] R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ionassisted deposition and plasma ion-assisted deposition”, Thin Solid Films, 410, pp. 86–93, 2002. [86] H. Ikeda, S. Goto, K. Honda, M. Sakashita, A. Sakai, S. Zaima, and Y. Yasuda, “Structural and Electrical Characteristics of HfO2 Films Fabricated by Pulsed Laser Deposition”, Jpn. J. Appl. Phys., 41, pp. 2476–2479, 2002. [87] D.M. Hausmann and R.G. Gordon, “Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films”, J. Cryst. Growth, 249, pp. 251–261, 2003. [88] M. Leskela and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films, 409, pp. 138– 146, 2002. [89] http://gcep.stanford.edu/research/factsheets/atomic_layer_ deposition.html [90] http://bentgroup.stanford.edu/Research/research_ALD.html [91] P.D. van der Wal, D. Briand, G. Mondin, S. Jenny, S. Jeanneret, C. Millon, H. Roussel, C. Dubourdieu, and N.F. de Rooij, “High-k dielectrics for use as ISFET gate oxides”, Proceedings of the IEEE Sensors, 2, pp. 677–680, 2004. [92] G.He, M.Liu, L.Q. Zhu, M.Chang, Q.Fang, L.D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Sci., 576, pp. 67–75, 2005. [93] D.E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc., 70, pp. 1807–1818, 1974. [94] V.K. Khanna, A. Kumar, Y.K. Jain, and S. Ahmad, “Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor”, Int. J. Electron., 93, pp. 81–96, 2006. [95] T. Mikolajick, R. Kuhnhold, R. Schnupp, and H. Ryssel, “The influence of surface oxidation on the pH-sensing properties of silicon nitride”, Sens. Actuators B, 58, pp. 450–455, 1999. [96] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications”, IEEE Trans. Biomed. Eng., 48, pp. 340–344, 2001. [97] A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, G. Claudio, Y. Jakobson, and Nemirovsky, “CMOSreadout circuitry for ISFET microsystems”, Sens. Actuators B, 97, pp. 122–131, 2004. [98] W.Y. Chung and C.H. Yang, “A new body-effect elimination technique for ISFET measurement”, Proceeding of the IEEE Sensors, 2, pp. 1046–1049, 2005. [99] Yuan Taur and Tak H. Ning, “Fundamentals of Morden VLSI Devices”, Cambridge, 1998. [100] Chou JC and Wang YF, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method”, Sens Actuator B, 86, pp. 58–62, 2002. [101] Bousse L, Mostarshed S, Schoot BVD, and Rooij NFD, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sens Actuator B, 17, pp. 157–164, 1994. [102] C.-S. Lai, C.-M. Yang, and T.-F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing”, Electrochem. Solid State Lett., 9 (3), pp. G90– G92, 2006. [103] M. Yuqing, C. Jianrong, and F. Keming, “New technology for the detection of pH”, J. Biochem. Biophys. Methods, 63, pp. 1–9, 2005. [104] B. Premanode and C. Toumazou, “A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis”, Sens. Actuators B, 120, pp. 732 –735, 2007. [105] D. Goncalves, D.M.F. Prazeres, V. Chu, and J.P. Conde, “Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors”, Biosens. Bioelectron., 24, pp. 545–551, 2008. [106] B.A. McKinley, “ISFET and Fiber Optic Sensor Technologies: In Vivo Experience for Critical Care Monitoring”, Chem. Rev., 108, pp. 826–844, 2008. [107] L.-B. Chang, H.-H. Ko, Y.-L. Lee, C.-S. Lai, and C.-Y. Wang, “The electrical and pH-sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., 153 (4), pp. G330–G332, 2006. [108] K.-M. Chang, K.-Y. Chao, T.-W. Chou, and C.-T. Chang, “Characteristics of zirconium oxide gate ion-sensitive field-effect transistors,” Jpn. J. Appl. Phys., 46, pp. 4333–4337, 2007. [109] C.-Y. Chen, J.-C. Chou, and H.-T. Chou, “Defect generation for a hydrated layer and thermal stability based on Ba0.7Sr0.3TiO3/SiO2 as H+ sensitive layer in ion-sensitive field-effect transistor devices,” Jpn. J. Appl. Phys., 48, p. 045501, 2009. [110] P.-K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD,” Appl. Surf. Sci., 214, pp. 214–221, 2003. [111] T.-M. Pan, J.-C. Lin, M.-H. Wu, and C.-S. Lai, “Study of high-k Er2O3 thin layer as ISFET sensitive insulator surface for pH detection,” Sens. Actuators B, 138, pp. 619–624, 2009. [112] W. M. Siu, and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects,” IEEE Trans. Electron Devices, ED-26, pp. 1805–1815, 1979. [113] L. K. Meixner, and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sens. Actuators B, 6, pp. 315–318, 1992. [114] S.-R. Leea, K. Sawada, H. Takao, and M. Ishida, “An enhanced glucose biosensor using charge transfer techniques”, Biosens. Bioelectron., 24, pp. 650–656, 2008. [115] T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Characteristics of Highly Sensitive pH Sensors with Charge Accumulation Operation”, Jpn. J. Appl. Phys., 48, pp. 9259–9263, 2009. [116] K. Sawada, T. Shimada, T. Ohshina, H. Takao, and M. Ishida, “Highly sensitive ion sensors using charge transfer technique,” Sens. Actuators B, 98, pp. 69–72, 2004. [117] F. Bendriaa, F. L. Bihan, A. C. Salaün, T. M.-Brahim, and O. Bonnaud, “Study of mechanical stability of suspended bridge devices used as pH sensors,” J. Non-Cryst. Solids, 352, pp. 1246–1249, 2006. [118] H. Mahfoz-Kotb, A.C. Salaün, F. Bendriaa , F. Le Bihan, T. Mohammed- Brahim, J.R. Morante, “Sensing sensibility of surface micromachined suspended gate polysilicon thin film transistors”, Sens. Actuators B, 118, pp. 243–248, 2006. [119] T. Hirokane, H. Hashimoto, D. Kanzaki, S. Urabe, K. Arima, J. Uchikoshi, and M. Morita, “Metal-insulator-gap-insulator- semiconductor structure for sensing devices,” Anal. Sci., 25, pp. 101–104, 2009. [120] O. Knopfmacher, A. Tarasov, Wanġyang Fu, M. Wipf, B. Niesen, M. Calame, and C. Schönenberger, “Nernst Limit in Dual-Gated Si-Nanowire FET Sensors”, Nano Lett., 10, pp. 2268–2274, 2010. [121] D. Kahng and S. M. Sze, “A Floating Gate and Its Application to Memory Devices”, Bell Syst. Tech. J., 46, pp. 1288, 1967. [122] Y. Wang, Y. Zhao, B.M. Khan, C.L. Doherty, J.D. Krayer, and M.H. White, “A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase”, Solid-State Electronics, 48, pp. 2031–2034, 2004. [123] S. J. Wrazien, Y. Zhao, J.D. Krayer, and M.H. White, “Characterization of SONOS oxynitride nonvolatile semiconductor memory devices”, Solid-State Electronics, 47, pp. 885–891, 2003. [124] S. Huang and S. Oda, “Charge storage in nitrided nanocrystalline silicon dots”, Appl. Phys. Lett., 87, pp. 173107-1–173107-3, 2005. [125] Y.-H. Lin, C.-H. Chien, C.-T. Lin, C.-Y. Chang, and T.-F. Lei, “High-Performance Nonvolatile HfO2 Nanocrystal Memory”, IEEE Trans. Electron. Lett., 26, pp. 154–156, 2005. [126] J.D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol., 1 (1), pp. 72–77, 2002. [127] J.-C. Wang, C.-S. Lai, Y.-K. Chen, C.-T. Lin, C.-P. Liu, Michael R.S. Huang, and Y.-C. Fangc, “Characteristics of Gadolinium Oxide Nanocrystal Memory with Optimized Rapid Thermal Annealing”, Electrochem. Solid State Lett., 12 (6), pp. H202– H204, 2009. [128] C.D. Fung, P.W. Cheung, W.H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Trans. Electron Devices, 33, pp. 8–18, 1986. [129] P. Bergveld, A. van den Berg, P.D. van der Wal, M. Skowronska-Ptasinska, E.J.R. Sudhölter, D.N. Reinhoudt, “How electrical and chemical requirements for REFETs may coincide”, Sens. Actuators, 18, pp. 309–327, 1989. [130] A. Errachid, J. Bausells, N. Jaffrezic-Renault, “A simple REFET for pH detection in differential mode”, Sens. Actuators B, 60, pp. 43–48, 1999. [131] M.-H. Wu, C.-D. Lee, and T.-M. Pan, “High dielectric constant PrYxOy sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea”, Anal. Chim. Acta, 651, pp. 36–41, 2009. [132] M.-H.Wu, C.-H. Cheng, C.-S. Lai, and T.-M. Pan, “Structural properties and sensing performance of high-k Sm2O3membrane- based electrolyte-insulator- semiconductor for pH and urea detection”, Sens. Actuators B, 138, pp. 221–227, 2009. [133] L.M. Shepherd and C. Toumazou, “A biochemical translinear principle with weak inversion ISFETs”, IEEE Trans. Circuits Syst., 52, pp. 2614–2619, 2005. [134] Y. Yang, A. Purwar, and M. H. White, “Reliability considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electron., 43, pp. 2025–2032, 1999. [135] A. Errachid, J. Bausells, N. Zine, H. Jaffrezic, C, Martelet, N. Jaffrezic- Renault, and M. Charbonnier, “Analytical features of K+-sensitive membranes obtained by implantation in silicon dioxide films”, Mat. Sci. Eng. C, 21, pp. 9–13, 2002. [136] S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Portable blood extraction device integrated with bio-medical monitoring system”, Proc. of the International Society for Optical Engineering, 6037, pp. 60370J1–60370J8, 2006. [137] J. Alonso, J. Artigas, and C. Jiménez, “Analysis and identification of several apple varieties using ISFET sensors”, Talanta, 59, pp. 1245–1252, 2003. [138] J. Artigas, C. Jiménez, C. Domínguez, S. Mínguez, A. Gonzalo, J. Alonso, “Development of a multiparametric analyser based on ISFET sensors applied to process control in the wine industry”, Sens. Actuators B, 89, pp. 199–204, 2003. [139] A. Rudnitskaya, A. Ehlert, A. Legin, Yu. Vlasov, and S. Büttgenbach, “Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater”, Talanta, 55, pp. 425–431, 2001. [140] T. Yoshinobu, M.J. Schöning, R. Otto, K. Furuichi, Yu. Mourzina, Yu. Ermolenko, and H. Iwasaki, „Portable light-addressable potentiometric sensor (LAPS) for multisensor applications“, Sens. Actuators B, 95, pp. 352–356, 2003. [141] N.H. Chou, J.C. Chou, T.P. Sun, and S.K. Hsiung, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sens. J., 5 (6), pp. 1362–1368, 2005. [142] Yu. Mourzina, Th. Mai, A. Poghossian, Yu. Ermolenko, T. Yoshinobu, Yu. Vlasov, H. Iwasaki, and M.J. Schöning, “K+-selective field-effect sensors as transducers for bioelectronic applications”, Electrochim. Acta, 48, pp. 3333–3339, 2003. [143] F. Phillips, K. Kaczor, N. Gandhi, B.D. Pendley, R.K. Danish, M.R. Neuman, B. Toth, V. Horvath, and E. Lindner, “Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds”, Talanta, 74, pp. 255–264, 2007. [144] O.H. LeBlanc Jr., W.T. Grubb, Long-lived potassium ion selective polymer membrane electrode, Anal. Chem., 48, pp. 1658-1660, 1976. [145] Y. Qin, S. Peper, and E. Bakker, “Plasticizer-free polymer membrane ion-selective electrodes containing a methacrylic copolymer matrix”, Electroanalysis, 14, pp. 1375–1381, 2002. [146] Z.M. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, and A. Plantier, “K+-ISFET type microsensors fabricated by ion implantation”, Mater. Chem. Phys., 48, pp. 56–59, 1997. [147] E.A. Moschou and N.A. Chaniotakis, “Potassium selective CHEMFET based on an ion-partitioning membrane”, Anal. Chim. Acta, 445, pp. 183-190, 2001. [148] S. Yoshida, N. Hara, and K. Sugimoto, “Development of a wide range pH sensor based on electrolyte-insulator-semiconductor structure with corrosion-resistant Al2O3-Ta2O5 and Al2O3-ZrO2 double-oxide thin films”, J. Electrochem.l Soc., 151, pp. H53–H58, 2004. [149] N. Hara, S. Nagata, N. Akao, and K. Sugimoto, “Formation of Al2O3-Ta2O5 double-oxide thin films by low-pressure MOCVD and evaluation of their corrosion resistances in acid and alkali solutions”, J. Electrochem. Soc., 146, pp. 510–516, 1999. [150] W.C. Wu, C.S. Lai, J.C. Wang, J.H. Chen, M.W. Ma, T.S. Chao, “High-performance HfO2 gate dielectrics fluorinated by postdeposition CF4 plasma treatment”, J. Electrochem. Soc., 154 (7), pp. H561–H565, 2007. [151] C.S. Lai, W.C. Wu, J.C. Wang, and T.S. Chao, “Characterization of CF4-plasma fluorinated HfO2 gate dielectrics with TaN metal gate”, Appl. Phys. Lett., 86, pp. 222905, 2005. [152] B.J.O’Sullivan, V.S. Kaushik, J.-L. Everaert, L. Trojman, L.-Å. Ragnarsson, L. Pantisano, E. Rohr, S. DeGendt, and M. Heyns, “Effectiveness of nitridation of hafnium silicate dielectrics: a comparison between thermal and plasma nitridation”, IEEE Trans. Electron Devices, 54 (7), pp. 1771–1775, 2007. [153] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, S.-K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications”, IEEE Trans. Biomed. Eng., 48 (3), pp. 340–344, 2001. [154] C.-S. Lai, C.-E. Lue, C.-M. Yang, J.-H. Jao, and C.-C. Tai, “New pH-sensitive TaOxNy membranes prepared by NH3 plasma surface treatment and nitrogen incorporated reactive sputtering”, Sens. Actuators B, 130, pp. 77–81, 2008. [155] P. Bayiati, A. Malainou, E. Matrozos, A. Tserepi, P.S. Petrou, S.E. Kakabakos, and E. Gogolides, “High-density protein patterning through selective plasma-induced fluorocarbon deposition on Si substrates”, Biosens. Bioelectron., 24, pp. 2979–2984, 2009. [156] C.-S. Lai, C.-M. Yang, and T.-F. Lu, “Thickness effects on pH response of HfO2 sensing dielectric improved by rapid thermal annealing”, Jpn. J. Appl. Phys., 45, pp. 3807–3810, 2006. [157] C.-M. Yang, C.-S. Lai, T.-F. Lu, T.-C. Wang, and D.G. Pijanowska, “Drift and hysteresis effects improved by RTA treatment on hafnium oxide in pH-sensitive applications”, J. Electrochem. Soc., 155 (11), pp. J326–J330, 2008. [158] C.-S. Lai, T.-F. Lu, C.-M. Yang, Y.C. Lin, D.G. Pijanowska, and B. Jaroszewicz, “Body effect minimization using single layer structure for pH-ISFET applications”, Sens. Actuators B, 143, pp. 494–499, 2010. [159] M. Kosmulski, “Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2”, Langmuir, 13, pp. 6315–6320, 1997. [160] R.E.G. van Hal, J.C.T. Eijkel, and P. Bergveld, “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Adv. Colloid Interface Sci., 69, pp. 31–62, 1996. [161] M. Anik and T. Cansizoqlu, “Dissolution kinetics of WO3 in acidic solutions”, J. Appl. Electrochem., 36, pp. 603–608, 2006. [162] M. Kosmulski, “The pH-dependent surface charging and the points of zero charge”, J. Colloid Interface Sci., 253, pp.77–87, 2002. [163] J.-C. Chou and J.-L. Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing”, Sens. Actuators B, 62, pp. 81–87, 2000. [164] J.-C. Chou and J.-L. Chiang, “Study on the amorphous tungsten trioxide ion-sensitive field effect transistor”, Sens. Actuators B, 66, pp. 106–108, 2000. [165] J. Koo and H. Jeon, “Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications”, J. Korean Phys. Soc., 46, pp. 945–950, 2005. [166] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, “Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells”, Smart Mater. Struct., 15, pp. 877–888, 2006. [167] L. Bousse and P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators, 6, pp. 65–78, 1984. [168] J.-L. Chiang, J.-C. Chou, Y.-C. Chen, G.-S. Liau, and C.-C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor”, Jap. J. Appl. Phys., 42, pp. 4973–4977, 2003. [169] A.A. Poghossian, “Determination of the pHpzc of insulators surface from capacitance-voltage characteristics of MIS and EIS structures”, Sens. Actuators B, 44, pp. 551–553, 1997. [170] P.R. Barabash, R.S.C. Cobbold, and W.B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator- semiconductor field-effect transistors (EISFET's)”, IEEE Trans. Electron Devices, 34, pp. 1271–1282, 1987. [171] D.A. Neamen, “Semiconductor Physics and Devices”, 2nd edition, McGraw-Hill, Chapter 8,1997. [172] J.-C. Chou and L.-P. Liao, “Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method”, Thin Solid Films, 476, pp. 157–161, 2005. [173] T. Ito, H. Inagaki, and I. Igarashi, “ISFET's with ion-sensitive membranes fabricated by ion implantation”, IEEE Trans. Electron Devices, 35, pp. 56–64, 1988. [174] M.B. Ali, R. Kalfat, S. Sfihi, J.M. Chovelon, H.B. Ouada, N. Jaffrezic-Renault, “Sensitive cyclodextrin–polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection“, Sens. Actuators B, 62, pp. 233–237, 2000. [175] N.-H. Chou, J.-C. Chou, T.P. Sun, and S.-K. Hsiung, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sens. J., 5, pp. 1362–1368, 2005. [176] K. Tai, S. Yamaguchi, K. Tanaka, T. Hirano, I. Oshiyama, S. Kazi, T. Ando, M. Nakata, and M. Yamanaka, “Threshold voltage modulation technique using fluorine treatment through atomic layer deposition TiN suitable for complementary metal-oxide-semiconductor devices”, Jpn. J. Appl. Phys., 47 (4), pp. 2345–2348, 2008. [177] W.J. Maeng, J.Y. Son, and H. Kim, “Effects of fluorine plasma treatment on the electronic structure of plasma-enhanced atomic layer deposition HfO2”, J. Electrochem. Soc., 156 (5), pp. G33–G330, 2009. [178] K. Seo, R. Sreenivasan, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. - Int. Electron Devices Meet., pp. 417, 2005. [179] M. Inoue, S. Tsujikawa, M. Mizutani, K. Nomura, T. Hayashi, K. Shiga, J. Yugami, J. Tsuchimoto, Y. Ohno, and M. Yoneda, Tech. Dig. - Int. Electron Devices Meet., pp. 413, 2005. [180] W. Chen, Q.-Q. Sun, S.-J. Ding, D.-W. Zhang, L.-K. Wang, “First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide”, Appl. Phys. Lett., 89, pp. 152904-1–152904-3, 2006. [181] K. Tse and J. Robertson, “Defect passivation in HfO2 gate oxide by fluorine”, Appl. Phys. Lett., 89, pp. 142914-1–142914-3, 2004. [182] S.J. Ding, Y.J. Huang, Q.Q. Sun, W. Zhang, “Physical and electrical characterization of fluorine plasma treated hafnium oxide film for high density metal-insulator-metal capacitors”, ECS Trans., 25 (6), pp. 209–217, 2009. [183] J.H. Thomas III, “Surface modification by plasmas: x-ray photoemission studies”, J. Vac. Sci. Technol. B, 7 (5), pp. 1236–1243, 1989. [184] A.C. Miller, F.P. McCluskey, and J.A. Taylor, “An x-ray photoelectron spectroscopy study of aluminum surfaces treated with fluorocarbon plasmas”, J. Vac. Sci. Technol. A, 9 (3), pp. 1461–1465, 1991. [185] K.-S. Song, T. Sakai, H. Kanazawa, Y. Araki, H. Umezawa, M. Tachiki, and H. Kawarada, “Cl- sensitive biosensor used electrolyte-solution-gate diamond FETs”, Biosens. Bioelectron., 19, pp. 137–140, 2003. [186] K. Hirama, H. Takayanagi, S. Yamauchi, Y. Jingu, H. Umezawa, H. Kawarada, “Diamond MISFETs fabricated on high quality polycrystalline CVD diamond”, Proc. of the International Symposium on Power Semiconductor Devices & ICs, Jeiu, Korea, pp. 269-272, May 27–30, 2007. [187] P. Temple-Boyer, A. Benyahia, W. Sant, M.L. Pourciel-Gouzy, J. Launay, and A. Martinez, “Modelling of urea-EnFETs for haemodialysis applications”, Sens. Actuators B, 131, pp. 525–532, 2008. [188] F. Kuralay, H. Özyörük, and A. Yildiz, “Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film”, Sens. Actuators B, 109, pp. 194–199, 2005. [189] G. Dhawan, G. Sumana, and B.D. Malhotra, “Recent developments in urea biosensors”, Biochem. Eng. J., 44, pp. 42–52, 2009. [190] J. Carlsson and J. Bergström, “The diurnal variation in cow's milk and how milk fat content, storage and preservation affects analysis by a flow injection technique”, Acta Vet. Scand., 35, pp. 67–77, 1994. [191] J.L.F.C. Lima, C. Delerue-Matos, and M.C.V.F. Vaz, “Flow injection system with potentiometric detection for the determination of urea content in milks”, J. Agric. Food Chem., 46, pp. 1386–1389, 1998. [192] L. Goeyens, N. Kindermans, M.A. Yusuf, and M. Elskens, “A room temperature procedure for the manual determination of urea in seawater”, Estua. Coast. Shelf Sci., 47, pp. 415–418, 1998. [193] C.J. Patton and S.R. Crouch, “Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia”, Anal. Chem., 49, pp. 464–469, 1977. [194] A. Ramsing, J. Ruzicka, and E.H. Hensen, “A new approach to enzymatic assay based on flow-injection spectrophotometry with acid-base indicators”, Anal. Chim. Acta, 114, pp. 165–181, 1980. [195] F. Roch-Ramel, “An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens”, Anal. Biochem., 21, pp. 372–381, 1967. [196] D.G. Pijanowska and W. Torbicz, “pH-ISFET based urea biosensor”, Sens. Actuators B, 44, pp. 370–376, 1997. [197] S. Arisawa, T. Arise, and R. Yamamoto, “Concentration of enzymes adsorbed onto Langmuir films and characteristics of a urea sensor”, Thin Solid Films, 209, pp. 259–263, 1992. [198] Y. Hanazato, K. Inatomi, G. Nakako, and M. Maeda, “Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors”, IEEE Trans. on Electron Devices, ED-33, pp. 47–51, 1986. [199] N. Das, P. Prabhakar, A.M. Kayastha, and R.C. Srivastava, “Enzyme entrapped inside the reversed micelle in the fabrication of a new urea sensor”, Biotechnol. Bioeng., 54, pp. 329–332, 1997. [200] B.H. van der Schoot and P.Bergveld, “The pH static enzyme Sensor”, Anal. Chim. Acta, 199, pp. 157–160, 1987. [201] B.H. van der Schoot and P.Bergveld, “ ISFET based enzyme sensors”, Biosens. Bioelectron., 3, pp. 161–186, 1987/88. [202] Rajesh, V. Bisht, W. Takashima, and K. Kaneto, “An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film”, Biomaterials, 26, pp. 3683–3690, 2005. [203] Karube, E.Tamiya, J.M. Dicks, and M.Gotoh, “A microsensor for urea based on an ion-selective field effect transistor”, Anal. Chim. Acta, 185, pp. 195–200, 1986. [204] S. Alegret, J. Bartrolí, C. Jiménez, E. Martínez-Fàbregas, D. Martorell, F. Valdés-Perezgasga, “ISFET-based urea biosensor”, Sens. Actuators B, 16, pp. 453–457, 1993. [205] F. Gardies, N. Jaffrezic-Renault, C. Martelet, H. Perrot, J.-M. Valleton, and S. Alegret “Micro-enzyme field effect transistor sensor using direct covalent bonding of urease”, Anal. Chim. Acta, 231, pp. 305–308, 1990. [206] http://www.rpi.edu/dept/chem-eng/Biotech-Environ/IMMOB/ goel2nd.htm [207] W.J. Cho and H.J. Huang, “An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode”, Anal. Chem., 70, pp. 3946–3951, 1998. [208] J. Magalhes and A. Machado, “Urea potentiometric biosensor based on urease immobilized on chitosan membranes”, Talanta, 47, pp. 183–191, 1998. [209] W.Y. Lee, K.S. Lee, T.H. Kim, M.C. Shin, and J.K. Park, “Microfabricated conductometric urea biosensor based on sol-gel immobilized urease”, Electroanalysis, 12, pp. 78–82, 2000. [210] H.M. Chen and E.J. Wang, “Optical urea biosensor based on ammonium ion selective membrane”, Anal. Lett., 33, pp. 997–1011, 2000. [211] Y.J. Xu, C.Y. Lu, Y. Hu, L.H. Nie, and S.Z. Yao, “Preparation of urea sensors with a series piezoelectric crystal device”, Anal. Lett., 29, pp. 1069–1080, 1996. [212] S. Caras and J. Janata, “Field effect transistor sensitive to penicillin”, Anal. Chem., 52, pp. 1935–1937, 1980. [213] V.R.S. Babu, M.A. Kumar, N.G. Karanth, and M.S. Thakur, “Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications”, Biosens. Bioelectron., 19, pp. 1337–1341, 2004. [214] H.H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports“, Appl. Biochem. Biotechnol., 41, pp. 157–188, 1993. [215] S. Libertino, F. Giannazzo, V. Aiello, A. Scandurra, F. Sinatra, M. Renis, and M. Fichera, “XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces“, Langmuir, 24, pp. 1965-1972, 2008. [216] J. Hernando, T. Pourrostami, J.A. Garrido, O.A. Williams, D.M. Gruen, A. Kromka, D. Steinmüller, and M. Stutzmann, “Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond”, Diam. Relat. Mat., 16, pp. 138–143, 2007. [217] S.W. Park, Y.I. Kim, K.H. Chung, S.I. Hong, and S.W. Kim, “Covalent immobilization of GL-7-ACA acylase on silica gel through silanization”, React. Funct. Polym., 51, pp. 79–92, 2002. [218] Q. Yang, P. Atanasov, E. Wilkins, and R.C. Hughes, “Enzyme Electrodes with Glucose Oxidase Immobilized on Stöber Glass Beads Analytical Letters”, Anal. Lett., 28, pp. 2439–2457, 1995. [219] I.H. Segel, Biochemical calculations, in: Henri–Michaelis–Menton Equation, 2nd ed., John Wiley & Sons, pp. 214–216, 1976. [220] M.J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning -in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EISstructure”, Sens. Actuators B, 111-112, pp. 423-429, 2005. [221] J.-L. Chiang, S.-S. Jan, J.-C. Chou, and Y.-C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide”, Sens. Actuators B, 76, pp. 624–628, 2001. [222] P.-K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci., 214, pp. 214–221, 2003. [223] L. Bousse, S. Mostarshed, B. van der Shoot, N.F. de Rooij, P. Gimmel, and Wolfgang Göpel, “Zeta potential measurements of Ta2O5 and SiO2 thin films”, J. Colloid Interface Sci., 147, pp. 22–32, 1991. [224] J.A. Garrido, A. Härtl, S. Kuch, and M. Stutzmann, “pH sensors based on hydrogenated diamond surface”, Appl. Phys. Lett., 86, pp. 073504-1–073504-31, 2005. [225] M. Zayats, O.A. Raitman, V.I. Chegel, A.B. Kharitonov, and I. Willner, “Probing antigen−antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors”, Anal. Chem., 74 (18), pp. 4763–4773, 2002. [226] R.R.K. Reddy, A. Chadha, and E. Bhattacharya, “Porous silicon based potentiometric triglyceride biosensor”, Biosens. Bioelectron., 16, pp. 313–317, 2001.
|