跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂增富
研究生(外文):Tseng Fu Lu
論文名稱:具可程式化結構與高介電感測薄膜之離子感測電晶體於生物感測之應用
論文名稱(外文):ISFET with Programmable Structures and High-k Sensing Membranes for Bio-Applications
指導教授:賴朝松王哲麒
指導教授(外文):C. S. LaiJ. C. Wang
學位類別:博士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:291
中文關鍵詞:離子感測場效電晶體電解液-氧化層-半導體感測器氧化鉿非揮發式記憶體電漿處理尿素氫離子鈉離子鉀離子
外文關鍵詞:ion-sensitive field-effect transistorelectrolyte-insulator-semiconductorHfO2nonvolatile memoryplasma treatmentureahydrogen ionsodium ionpotassium ion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
為達到即時監測和同時量測,多功能感測器陣列扮演重要之角色於工業監控上與健康照護系統上之應用。近年來為實現多功能感測器陣列,許多研究致力於整合不同功能之離子感測電晶體感測器於單一晶片或混合微膜組件上對多種物質濃度同時進行感測。於本論文中,為製作多功能感測薄膜,將利用微電子技術之處理包括快速熱退火、電漿處理與參雜處理及化學溶液浸泡處理於高介電氧化鉿薄膜,使其對氫、鈉和鉀離子及尿素進行感測。就氫離子感測部分,利用濺鍍沉積系統與原子層沉積系統沉積之單層氧化鉿感測薄膜,經過攝氏九百度高溫退火處理後均有良好之感測度、漂移系數與遲滯效應表現。與傳統雙層感測層相比,單層氧化鉿離子感測電晶體擁有較低之基底效應。另外,藉由六氟化硫電漿處理後,來自鈉、鉀離子之感擾效應可有效減低。此外,具可程式化之感測器於本論文中首次提出用以感測氫離子濃度,經由程式化處理後其獲得之感測度可超過理想能斯特反應,且其操作可如快閃記憶體般並可達百次之多。就鈉、鉀離子感測部分,利用鎢參雜製備之鉿鎢氧化薄膜與利用四氟甲烷電漿處理製備之氟化氧化鉿被提出作為感測薄膜。經由攝氏三百度四氟甲烷電漿處理五分鐘後,其鈉、鉀離子感測度分別為50.47 mV/pNa與45.75 mV/pK,且其生命期可達六百天之久。就尿素感測部分,經由遠距氨電漿處理之氨化氧化鉿可對尿素具有感測能力,且經過一百瓦九分鐘與兩百瓦六分鐘處理後之氨化氧化鉿薄膜具有與以傳統化學矽烷化處理製備之氨化氧化鉿薄膜相同之感測度。根據所載之研究成果,多功能感測器陣列可以利用開發之官能化氧化鉿薄膜於離子感測電晶體感測器上來實現。
For the requirements of multi-parameter sensor for real-time and in-line measurements in industry and health care system, a number of attempts have been made to integrate several types ISFET on a single chip or in a hybrid module to measure several analyte concentrations simultaneously. For the development of multi-sensing membranes, a systematic study on the functionalized methods including annealing, plasma, doping, and chemical procedures on high-k HfO2 are presented. For pH sensing, both single sputtered- and ALD-HfO2 films with annealing treatment at 900oC show good sensing performances on sensitivity, drift coefficient and hysteresis. When compared to stack layer structure, lower body effect can be obtained for single HfO2 ISFET. With SF6 plasma treatments, the interferences from Na+ and K+ ions can be effectively decreased. In addition, a programmable sensor, which has highly sensitivity over idea Nernst response under programming, was proposed. The memory-like operation can be achieved to hundred program/erase cycles. For pK and pNa sensing, HfxWyOz dual oxides by W doping and fluorinated-HfO2 films by CF4 plasma were successfully developed. With CF4 plasma at 300oC for 5 min, the pK- and pNa-sensitivity for fluorinated-HfO2 film were 45.75 mV/pK and 50.47 mV/pNa, respectively, and the lifetime was over 600 days. For pCurea sensing, ammoniated-HfO2 films by remote NH3 plasma treatments were successfully developed. When compared to the conventional silanization procedures, the similar pCurea sensitivity of 95.47 and 99.22 mV/pCurea for HfO2 films with remote NH3 plasma treatments under 100 W for 9 min and 200 W for 6 min can be obtained, respectively. Based on the achievements in this thesis, multi-parameter sensor array could be realized using developed functionalized-HfO2 films on ISFET.
Table of Contents
誌謝 - v -
摘要 - vii -
Abstract - viii -
Table of Contents - x -
List of Tables - xiv -
Figure Captions - xvi -
Chapter 1 Introduction - 1 -
1.1 Background - 1 -
1.2 Motivation - 6 -
1.3 Dissertation Organization - 8 -
Chapter 2 Devices and Methods - 15 -
2.1 Draft of Researches - 15 -
2.2 Fabrication of Devices - 16 -
2.2.1 Process Flow of EIS - 17 -
2.2.2 Process Flow of ISFET - 18 -
2.2.3 Radio Frequency Sputtering Process - 19 -
2.2.4 Atomic Layer Deposition Process - 20 -
2.3 Measurements - 22 -
2.3.1 Capacitance-Voltage (C-V) Measurement - 22 -
2.3.2 Current-Voltage (I-V) Measurement - 23 -
2.3.3 Constant Voltage Constant Current Circuit
Measurement - 23 -
2.4 Sensor Parameters - 25 -
2.4.1 Sensitivity - 25 -
2.4.2 Linearity - 26 -
2.4.3 Drift Coefficient - 27 -
2.4.4 Hysteresis - 27 -
2.4.5 Selectivity - 28 -
2.5 Physical Analyses - 29 -
2.5.1 X-ray Photoelectron Spectroscopy - 29 -
2.5.2 Atomic Force Microscopy - 30 -
Chapter 3 pH Sensing Characteristics of Sputtered- and Atomic Layer Deposited-Hafnium Oxide Films - 43 -
3.1 Introduction - 43 -
3.1.1 Background - 43 -
3.1.2 Motivations - 46 -
3.2 Framework and Methods - 47 -
3.2.1 Framework of This Chapter - 47 -
3.2.2 Rapid Thermal Annealing Process - 47 -
3.2.3 Surface Sulfur Hexafluoride Plasma Process - 48 -
3.3 pH Sensing Characteristics of Sputtered-HfO2 Thin
Films - 48 -
3.3.1 Double and Single Layer Structures - 48 -
3.3.2 Thickness Effect - 49 -
3.3.3 Post Deposition Annealing - 51 -
3.3.4 Sputtered-HfO2 Gate ISFET - 54 -
3.3.5 Sulfur Hexafluoride Plasma Effect - 61 -
3.4 pH Sensing Characteristics of ALD-HfO2 Thin Films -65 -
3.4.1 Thickness Effect - 65 -
3.4.2 Post Deposition Annealing - 67 -
3.5 Summary - 69 -
Chapter 4 Programmable pH Sensor Based on Nonvolatile Memory Structures - 101 -
4.1 Introduction - 102 -
4.1.1 pH Sensor - 102 -
4.1.2 Nonvolatile Memory Structures - 104 -
4.1.3 Motivations - 105 -
4.2 Framework and Methods - 106 -
4.2.1 Framework of This Chapter - 106 -
4.2.2 Fabrication of HfO2/Gd2O3-NCs/SiO2/Si-EIS - 106 -
4.2.3 Fabrication of HfO2/Si3N4/SiO2/Si-EIS - 107 -
4.3 Gd2O3 Nanocrystals-Embedded EIS Devices - 108 -
4.3.1 pH Sensing Characteristics - 108 -
4.3.2 REFET Application - 112 -
4.3.3 Urea Sensor Application - 114 -
4.3.4 Charge Attraction Model - 116 -
4.4 SONOS-Like EIS Devices - 117 -
4.4.1 pH Sensing Characteristics of HfO2/Si3N4/SiO2/Si-EIS Devices - 117 -
4.5 Summary - 120 -
Chapter 5 Anion Sensing Membranes Based on HfxWyOz Dual-Oxide and Fluorinated-HfO2 Films - 137 -
5.1 Introduction - 137 -
5.1.1 Background - 137 -
5.1.2 Motivations - 140 -
5.2 Framework and Methods - 142 -
5.2.1 Framework of This Chapter - 142 -
5.2.2 Co-Sputtering Process - 143 -
5.2.3 Surface Carbon Tetrafluoride Plasma Process - 143 -
5.3 HfxWyOz Dual-Oxide Films for pK Detection - 144 -
5.3.1 pH and pK Sensing Characteristics - 144 -
5.3.2 pH Value at Point of Zero Charge - 149 -
5.4 Fluorinated-HfO2 Films for pNa and pK Detection - 151 -
5.4.1 CF4 Plasma Effect on ISFET - 151 -
5.4.2 Thermal CF4 Plasma Effect on EIS - 157 -
5.5 Summary - 164 -
Chapter 6 Enzymatic Membrane Based on Ammoniated-HfO2 Films for Urea Detection - 187 -
6.1 Introduction - 187 -
6.1.1 Background - 187 -
6.1.2 Motivations - 191 -
6.2 Framework and Methods - 192 -
6.2.1 Framework of This Chapter - 192 -
6.2.2 Reagents - 192 -
6.2.3 Preparation of Enzymatic Layer Using Silanization Procedures - 193 -
6.2.4 Preparation of Enzymatic Layer Using Remote Ammonium Plasma - 193 -
6.3 Urea Detection Based on Ammoniated-HfO2 EIS - 195 -
6.3.1 EIS with Silanization Procedures - 195 -
6.3.2 EIS with Remote Ammonium Plasma - 196 -
6.4 Summary - 200 -
Chapter 7 Conclusions - 215 -
7.1 Summary - 215 -
7.2 Future Works - 219 -
References - 221 -
Publication List - 252 -


List of Tables

Table 1-1. Types of electrochemical transducer for classied types of measurement, with corresponding analytes to be measured [9].- 10 -
Table 1-2. Historical landmarks in the development of BioFET devices [8].- 11 -
Table 1-3. Examples of EnFETs including the enzyme system used and the analyte to be detected [25].- 12 -
Table 1-4. The comparison of ISFET, ChemFET, EnFET, ImmunoFET, cell-based BioFET, and GenFET in structure, analyte, and sensitive membrane.- 13 -
Table 3-1. Comparison of sensing characteristics of various insulators.- 71 -
Table 3-2. Comparison of properties of various high-k dielectrics [68].- 71 -
Table 3-3. Comparison of quality of films deposited using various techniques.- 72 -
Table 3-4. Summary of pH sensing characteristics of sputtered-HfO2 /Si-EIS under various conditions.- 73 -
Table 3-5. Summary of electrical properties and pH sensing characteristics of stack HfO2/SiO2, single HfO2 and stack Si3N4/SiO2 gate MISFETs and ISFETs.- 73 -
Table 3-6. Summary of pH sensing characteristics of HfO2/Si-EIS under various SF6 plasma conditions.- 74 -
Table 3-7. Summary of pH sensing characteristics of ALD-HfO2/Si-EIS under various conditions.- 74 -
Table 5-1. Conditions for HfxWyOz dual-oxide films deposition.- 166 -
Table 6-1. Silanization procedures and remote NH3 plasma treatment for urea biosensor fabrication based on EIS and ISFET.- 202 -
Table 6-2. Summary of pH and pCurea sensing characteristics of ALD-HfO2/SiO2-EIS and Si3N4/SiO2-EIS under various conditions.- 203 -

Figure Captions

Fig. 1-1. Elements and selected components of a typical biosensor [7,8].- 14 -
Fig. 2-1. General process flow of EIS device fabrication.
- 32 -
Fig. 2-2. General process flow of EIS device fabrication.
- 33 -
Fig. 2-3. Photograph of EIS devices with encapsulation.
- 33 -
Fig. 2-4. General process flow of ISFET device fabrication.
- 34 -
Fig. 2-5. Photograph of ISFET devices with encapsulation.
- 34 -
Fig. 2-6. Schematic diagram of radio frequency sputter system.- 35 -
Fig. 2-7. Photograph of radio frequency sputter system.
- 35 -
Fig. 2-8. Schematic diagram of atomic layer deposition system.- 36 -
Fig. 2-9. Photograph of atomic layer deposition system.
- 36 -
Fig. 2-10. Thickness of HfO2 film as a function of ALD processing cycle.- 37 -
Fig. 2-11. Thickness uniformity of ALD-HfO2 film on 4 inch silicon wafer.- 37 -
Fig. 2-12. Schematic diagram of C-V measurement setup for EIS devices.- 38 -
Fig. 2-13. Scheme of constant voltage - constant current (CVCC) circuit.- 38 -
Fig. 2-14. Schematic diagram of CVCC measurement setup for ISFET devices.- 39 -
Fig. 2-15. Typical C-V responses to pH changes for an Al2O3/SiO2/Si/ Al-EIS structure. As shown in the inset, the flat-band voltage varies linearly with pH [3].- 39 -
Fig. 2-16. I-V responses to pH changes for the SnO2 gate ISFET. As shown in the inset, the flat-band voltage varies linearly with pH [4].- 40 -
Fig. 2-17. Typical drift responses of procaine and berberine drug sensors based on ruthenium dioxide membrane in 10-2 M concentration [7]. The drift coefficients were extracted in the time range from 5 to 12 h.- 40 -
Fig. 2-18. Typical hysteresis measurements of the Sentron 1090 Al2O3 gate pH-ISFET for full pH range [10].- 41 -
Fig. 2-19. Residual plot of hysteresis curves for the Sentron 1090 Al2O3 gate pH-ISFET [10].- 41 -
Fig. 2-20. Typical fixed interference method (FIM) measurement of ChemFET with different polysiloxane membranes [13].- 42 -
Fig. 3-1. Schematic diagram of ALD procedures [89,90].- 75 -
Fig. 3-2.Framework of experiments in chapter 3.- 76 -
Fig. 3-3. Temperature profile for RTA cleaning procedure.
- 77 -
Fig. 3-4. Normalized C–V curves of sputtered-HfO2/SiO2/Si-EIS and sputtered-HfO2/Si-EIS with different pH values (pH 2~pH 10).- 77 -
Fig. 3-5. pH sensitivity and linearity of sputtered-HfO2/SiO2/Si-EIS and sputtered-HfO2/Si-EIS.- 78 -
Fig. 3-6. Normalized C–V curves of 30 nm thick sputtered-HfO2/Si- EIS with different pH values (pH 2~pH 10).- 78 -
Fig. 3-7. Normalized C–V curves of 12 nm thick sputtered-HfO2/Si- EIS with different pH values (pH 2~pH 10).- 79 -
Fig. 3-8. Normalized C–V curves of 8 nm thick sputtered-HfO2/Si-EIS with different pH values (pH 2~pH 10).- 79 -
Fig. 3-9. pH sensitivity characteristics of sputtered-HfO2/Si-EIS as a function of the thickness of sputtered-HfO2 film.- 80 -
Fig. 3-10. Drift and hysteresis characteristics of sputtered-HfO2/Si-EIS as a function of the thickness of HfO2 film.- 80 -
Fig. 3-11. pH sensitivity characteristics of 8 nm thick sputtered-HfO2 /Si-EIS as a function of annealing temperature.- 81 -
Fig. 3-12. Drift and hysteresis characteristics of 8 nm thick sputtered- HfO2/Si-EIS as a function of annealing temperature.- 81 -
Fig. 3-13. AFM images of 8 nm thick sputtered-HfO2/Si-EIS without and with 900oC annealing treatment.- 82 -
Fig. 3-14. O 1s XPS spectra of 8 nm thick sputtered-HfO2/Si-EIS under various annealing temperature.- 83 -
Fig. 3-15. Hf 4f XPS spectra of 8 nm thick sputtered-HfO2/Si-EIS without and with 900oC annealing treatment.
- 83 -
Fig. 3-16. (a) IDS–VGS and (b) GM–VGS characteristics of stack HfO2/SiO2, single HfO2 and stack Si3N4/SiO2 gate MISFETs.- 84 -
Fig. 3-17. Comparison of IDS–VGS and GM–VGS characteristics between single HfO2 gate MISFET and ISFET in buffer solution with pH of 7.- 84 -
Fig. 3-18. IDS–VGS curve of single HfO2 gate MISFET and extraction of subthreshold slope.- 85 -
Fig. 3-19. IDS–VGS curves of stack HfO2/SiO2 gate ISFET with different pH values (pH 2~pH 12) at 25oC. The inset shows the extraction of pH sensitivity from linear region of IDS–VGS curves.- 85 -
Fig. 3-20. pH response of stack HfO2/SiO2 gate ISFET, single HfO2 gate ISFET and stack Si3N4/SiO2 gate ISFET measured in the standard pH buffer solutions from pH 2 to pH 12.- 86 -
Fig. 3-21. IDS–VGS curves shift versus biased VBS characteristics of stack HfO2/SiO2 gate MISFET, single HfO2 gate MISFET and stack Si3N4/SiO2 gate MISFET. The applied voltage of VDS was 0.5 V and the applied voltage of VBS was varying from 0 to 3 V with step of 0.1 V.- 87 -
Fig. 3-22. The applied voltage of VDS was 0.5 V and the applied voltage of VBS was varying from 0 to 0.5 V with step of 0.1 V.- 88 -
Fig. 3-23. IDS–VGS curves shift versus biased VBS characteristics of stack HfO2/SiO2 ISFET and single HfO2 gate ISFET.- 88 -
Fig. 3-24. Extraction of body-effect on pH detection of stack HfO2/SiO2 gate ISFET and single HfO2 gate ISFET at IDS =2×10−5 A from Fig. 3-23.- 89 -
Fig. 3-25. pK responses of single HfO2 gate ISFET with different pK values (pK 1~pK 5).- 89 -
Fig. 3-26. pNa responses of single HfO2 gate ISFET with different pnA values (pNa 1~pNa 5).- 90 -
Fig. 3-27. pH sensitivity characteristics of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment based on EIS structure.- 90 -
Fig. 3-28. Drift characteristics of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment based on EIS structure.- 91 -
Fig. 3-29. Hysteresis measurement of HfO2 thin film with 5 min SF6 plasma treatment. The measuring loop cycle is pH 7-4-7-10-7 and the duration of hysteresis measurement is 60 min.- 91 -
Fig. 3-30. Hysteresis characteristics of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment based on EIS structure.- 92 -
Fig. 3-31. pK sensitivity characteristics of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment based on EIS structure.- 92 -
Fig. 3-32. pNa sensitivity characteristics of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment based on EIS structure.- 93 -
Fig. 3-33. Surface roughness (Rq) characteristics using AFM analysis of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment.- 93 -
Fig. 3-34. Hf 4f XPS spectrum of the HfO2 thin film. The proportions of hafnium (AHf) was extracted from the peak area of Hf 4f spectrum.- 94 -
Fig. 3-35. O 1s XPS spectrum of the HfO2 thin film. The proportions of oxygen (AO) was extracted from the peak area of O 1s spectrum.- 94 -
Fig. 3-36. The Hf/O ratio of HfO2 thin films with 0, 1, 3, and 5 min SF6 plasma treatment from XPS spectrum.- 95 -
Fig. 3-37. Schematic diagram of surface reaction under pH electrolyte of HfO2 thin film without SF6 plasma treatment.
- 95 -
Fig. 3-38. Schematic diagram of surface reaction under pH electrolyte of HfO2 thin film with SF6 plasma treatment.
- 96 -
Fig. 3-39. Normalized C–V curves of 10 and 3.5 nm thick ALD-HfO2/Si -EIS with different pH values (pH 4~pH 12).
- 96 -
Fig. 3-40. pH sensitivity and linearity characteristics of ALD-HfO2/Si- EIS as a function of the thickness of ALD-HfO2 fil.- 97 -
Fig. 3-41. Long-term stability of ALD-HfO2/Si-EIS with different thickness of ALD-HfO2 film.- 97 -
Fig. 3-42. Drift coefficient of sputtered-HfO2/Si-EIS and ALD-HfO2/Si- EIS structures as a function of the thickness of HfO2 film.- 98 -
Fig. 3-43. Normalized C–V curves for 3.5 nm thick ALD-HfO2/Si-EIS structures without and with annealing treatment at 900oC in buffer solutions of different pH (pH 4 to pH 12).- 98 -
Fig. 3-44. pH sensitivity and correlation coefficient of 3.5 nm thick ALD-HfO2/Si-EIS as a function of annealing temperature.- 99 -
Fig. 3-45. AFM images - surface morphology of 3.5 nm thick ALD-HfO2/Si-EIS without (a) and with annealing treatment at 900oC (b).- 99 -
Fig. 3-46. Drift coefficient and hysteresis for 3.5 nm thick ALD-HfO2 /Si-EIS as a function of annealing temperature.- 100 -
Fig. 3-47. Hysteresis measurements of 3.5 nm thick ALD-HfO2/Si-EIS without and with annealing at 500, 700, 900oC for 1 min.- 100 -
Fig. 4-1. Framework of experiments in chapter 4.- 122 -
Fig. 4-2. Cross-section view of developed programmable pH sensors: (a) HfO2/Gd2O3-NCs/SiO2/Si-EIS and (b) HfO2/Si3N4/SiO2/ Si-EIS.- 123 -
Fig. 4-3. Cross-section HRTEM images of the fabricated NCs embedded EIS.- 124 -
Fig. 4-4. Normalized C-V hysteresis of Gd2O3-NCs embedded EIS under various sweep ranges measured in a buffer solution of pH 7. The inset shows the extracted memory window at 0.3×Cmax.- 124 -
Fig. 4-5. pH sensing response (in pH 7) characteristics of Gd2O3-NCs embedded EIS under various program voltages as a function of time.- 125 -
Fig. 4-6. Normalized C–V curves of Gd2O3-NCs embedded EIS without programming and with programming voltage -5 and -11 V for 10 s for different pH values (pH 2~pH 12).- 125 -
Fig. 4-7. pH sensitivity and linearity characteristics of Gd2O3-NCs embedded EIS without programming and with programming -5 and -11 V for 10 s.- 126 -
Fig. 4-8. pH sensitivity characteristics of Gd2O3-NCs embedded EIS under various programming voltages as a function of time. The inset shows an enlarged graph of green part.- 126 -
Fig. 4-9. pH response endurance characteristics of Gd2O3-NCs embedded EIS. The programming state is under -11 V for 1 s and the erasing state is under +9 V for 1 s.- 127 -
Fig. 4-10. pH sensitivity endurance characteristics of Gd2O3-NCs embedded EIS. The programing state was under -11 V for 1 s and the erasing state - under +9 V for 1 s.- 128 -
Fig. 4-11. Long-term stability of Gd2O3-NCs embedded EIS without programming and with -9, -11, and -13 V programming for 5 s.- 129 -
Fig. 4-12. pH sensitivity characteristics of Gd2O3-NCs embedded EIS with various sensing areas without programming and with programming under -11 V for 1 s.- 129 -
Fig. 4-13. Output signal and calculated pH sensitivity of Gd2O3-NCs embedded EIS sensor with radius of 5 μm without and with -11 V programming for 1 s.- 130 -
Fig. 4-14. Schematic cross-section view of urease immobilized Gd2O3- NCs embedded EIS using entrapment method.- 130 -
Fig. 4-15. Responses of Gd2O3-NCs embedded EIS without and with programming under -11 V for 30 s as a function of urea concentration.- 131 -
Fig. 4-16. Charge and potential distribution across the electrical double layer for Gd2O3-NCs embedded EIS without programming [134].- 131 -
Fig. 4-17. Charge and potential distribution across the electrical double layer for Gd2O3-NCs embedded EIS with programming.- 132 -
Fig. 4-18. Charge and potential distribution across the electrical double layer for Gd2O3-NCs embedded EIS with and without programming.- 132 -
Fig. 4-19. Normalized C–V curves of SONOS-like HfO2/Si3N4/SiO2- EIS at fresh state with different pH values (pH 4, 7, and 10).- 133 -
Fig. 4-20. Normalized C–V curves of SONOS-like HfO2/Si3N4/SiO2- EIS at programming state with different pH values (pH 4, 7, and 10).- 133 -
Fig. 4-21. pH sensitivity and linearity characteristics of SONOS-like HfO2/Si3N4/SiO2-EIS at fresh state and programming state.- 134 -
Fig. 4-22. pH sensitivity enhancement characteristics of SONOS-like HfO2/Si3N4/SiO2-EIS under various programming voltages as a function of programming time.- 134 -
Fig. 4-23. Schematic relationship between trapped charges and programming voltage and time.- 135 -
Fig. 4-24. Long-term stability of SONOS-like HfO2/Si3N4/SiO2-EIS at fresh state and programming state. The responsive voltage was measured as a function of time in a solution with a pH of 7.- 135 -
Fig. 4-25. pH sensitivity endurance of SONOS-like HfO2/Si3N4/SiO2-EIS. The programming state is under -19 V for 1 s and the erasing state is under 21 V for 1 s.- 136 -
Fig. 5-1. Framework of experiments in chapter 5.- 166 -
Fig. 5-2. Schematic cross-section view of the co-sputtering system.- 167 -
Fig. 5-3. Schematic of the PECVD system.- 167 -
Fig. 5-4. Hf 4f XPS spectra of the HfO2 film (film A), HxWyOz films (film B and C), and WO3 film (film D).- 168 -
Fig. 5-5. W4f XPS spectra of the HfO2 film (film A), HxWyOz films (film B and C), and WO3 film (film D).- 168 -
Fig. 5-6. O 1s XPS spectra of the HfO2 film (film A), HxWyOz films (film B and C), and WO3 film (film D).- 169 -
Fig. 5-7. Surface composition of HfxWyOz dual-oxide films from XPS analysis.- 169 -
Fig. 5-8. pH sensitivity and linearity characteristics of HfxWyOz dual-oxide films as a function of W content.- 170 -
Fig. 5-9. pH responses of HfxWyOz dual-oxide films from pH 2 to pH 12.- 170 -
Fig. 5-10. Hysteresis characteristics of HfxWyOz dual-oxide films in pH 7-4-7-10-7 and pH 7-10-7-4-7 loops as a function of W content.- 171 -
Fig. 5-11. Light effect in HfxWyOz dual-oxide films as a function of W content. The inset shows the normalized C-V characteristics performed in the sequence of dark-illumination-dark exposures.- 171 -
Fig. 5-12. pK sensitivity and linearity characteristics of HfxWyOz dual-oxide films as a function of W content.- 172 -
Fig. 5-13. pK responses of HfxWyOz dual-oxide films from pK 1 to pK 5.- 172 -
Fig. 5-14. Normalized C-V curves of the WO3 film (film D) on both EIS and MIS structures. For pHpzc extraction, the dash line C-V curve was shifted by 0.675 V from normalized C-V curve of MIS structure.- 173 -
Fig. 5-15. pH value at point of zero charge distribution of HfxWyOz dual-oxide films as a function of W content.- 173 -
Fig. 5-16. (a) Responses of the single HfO2 gate ISFET and the fluorinated-HfO2 gate ISFET to K+ ions concentration changes in the titration sequence. (b) Corresponding calibration curves. The inset figure shows the response time of the fluorinated-HfO2 gate ISFET for various K+ ion concentrations from IV to VIII.- 174 -
Fig. 5-17. (a) Responses of the HfO2 gate ISFET and the fluorinated-HfO2 gate ISFET to Na+ ions concentration changes in the titration sequence. (b) Corresponding calibration curves. The inset figure shows the response time of the fluorinated-HfO2 gate ISFET for various Na+ ion concentrations from IV to VIII.- 175 -
Fig. 5-18. F 1s XPS spectra of (a) the fluorinated-HfO2 sensing film and (b) the HfO2 sensing film. The intensity of F1s peak of the fluorinated-HfO2 sensing film increased substantially after the CF4 surface plasma treatment. Hf 4f XPS spectra of (c) the fluorinated-HfO2 sensing film and (d) the HfO2 sensing film. The higher binding energy of HfO2 double peaks were obtained for the fluorinated-HfO2 sensing film. O 1s XPS spectra of (e) the fluorinated-HfO2 sensing film and (f) the HfO2 sensing film. The HfOxFy peak was formed in the sample with plasma treatment.- 177 -
Fig. 5-19. Long-term drifts of the HfO2 gate ISFET and the fluorinated- HfO2 gate ISFET in 10 mM KCl/tris buffer solution. The inset shows the extracted drift coefficients of both ISFETs by linear fitting in the range from 5 to 12 h.- 178 -
Fig. 5-20. F 1s peak of (a) CF4 plasma treated HfO2 with 5 min at 300 oC, (b) CF4 plasma treated HfO2 with 5 min at 25 oC, and (c) as-deposited HfO2 without CF4 plasma treatment.
- 179 -
Fig. 5-21. Hf 4f peak of (a) CF4 plasma treated HfO2 with 5 min at 300 oC, (b) CF4 plasma treated HfO2 with 5 min at 25 oC, and (c) as-deposited HfO2 without CF4 plasma treatment.
- 180 -
Fig. 5-22. O 1s peak of (a) CF4 plasma treated HfO2 with 5 min at 300 oC, (b) CF4 plasma treated HfO2 with 5 min at 25 oC, and (c) as-deposited HfO2 without CF4 plasma treatment.
- 181 -
Fig. 5-23. Normalized C-V curves of (a) as-deposited HfO2-based EIS without CF4 plasma treatment, and (b) CF4 plasma treated HfO2-based EIS for 5 min at 300 oC with different pK values (pK 1~ pK 4).- 182 -
Fig. 5-24. Normalized C-V curves of (a) as-deposited HfO2-based EIS without CF4 plasma treatment, and (b) CF4 plasma treated HfO2-based EIS for 5 min at 300 oC with different pNa values (pNa 1~ pNa 4).- 183 -
Fig. 5-25. (a) pK sensitivity and (b) pNa sensitivity of the CF4 plasma treated HfO2-based EIS, as a function of plasma treatment time, and the HfO2-based ISFET treated with CF4 plasma for 5 min at 25 oC.- 184 -
Fig. 5-26. Long-term stability of HfO2 EIS treated with CF4 plasma for 0, 1 and 5 min at 300oC. The responsive voltage was measured as a function of time in a solution with a pNa of 2.- 185 -
Fig. 5-27. Long-term pNa sensitivity of HfO2 based EIS treated with CF4 plasma for 5 min at 300oC. The insets present the pNa response on the first and final testing day.- 185 -
Fig. 5-28. pH sensitivity characteristics of HfO2 EIS treated with CF4 plasma for 0, 1 and 5 min at 300oC.- 186 -
Fig. 5-29. Schematic of the F-O dipole formation and charge attraction for the pK and pNa sensing mechanism of CF4 plasma treated HfO2 thin films [185,186].- 186 -
Fig. 6-1. Schematic of biosensor [189].- 204 -
Fig. 6-2. Framework of experiments in chapter 6.- 205 -
Fig. 6-3. Schematic of silanization and urease immobilization process.- 206 -
Fig. 6-4. Schematic of remote NH3 plasma and urease immobilization process.- 207 -
Fig. 6-5. pH sensitivity distribution of various ALD-HfO2/SiO2- EIS.- 208 -
Fig. 6-6. Response of urea-biosensor with ALD-HfO2 film (EIS) without silanization procedures.- 208 -
Fig. 6-7. Responses of urea-biosensor with ALD-HfO2 film (EIS) treated with silanization procedures.- 209 -
Fig. 6-8. Responses of urea-biosensor with ALD-HfO2 and Si3N4 films (EIS) treated with silanization procedures.
- 209 -
Fig. 6-9. pH sensitivity of various ALD-HfO2/SiO2-EIS treated with 100 W remote NH3 plasma for 6 min.- 210 -
Fig. 6-10. N 1s XPS spectrum of the ALD-HfO2 film treated with 100 W remote NH3 plasma for 6 min.- 210 -
Fig. 6-11. Responses of urea-biosensor with ALD-HfO2 films (EIS) treated with 100 W remote NH3 plasma for 3, 6 and 9 min.- 211 -
Fig. 6-12. pCUrea and pH sensitivity of urea-biosensor with ALD-HfO2 films (EIS) as a dependence on power of remote NH3 plasma for 6 min.- 211 -
Fig. 6-13. Responses of urea-biosensor with ALD-HfO2 films (EIS) treated with remote NH3 plasma under various powers of 50, 100 and 200 W for 6 min.- 212 -
Fig. 6-14. pCUrea and pH sensitivity of urea-biosensor with ALD-HfO2 films (EIS) as a dependence on time of 100 W remote NH3 plasma.- 212 -
Fig. 6-15. Responses of urea-biosensor with ALD-HfO2 films (EIS) treated with 100 W and 200 W remote NH3 plasma for 9 min and 6 min, respectively.- 213 -
Fig. 6-16. Responses of urea biosensor with ALD-HfO2 films (EIS) treated with 200 W for 6 min under various periods of storage.- 213 -
Fig. 6-17. Michaelis-Menten constant (Km) extractions for (b) free urease, (c) Si3N4 film with silanization, (d) HfO2 film with silanization, (e) HfO2 with remote NH3 plasma of 200 W for 6 min, and (f) HfO2 with remote NH3 plasma of 100 W for 9 min.- 214 -

[1] http://www.daytondailynews.com/lifestyle/ohio-health-news/as- aging-population-grows-health-care-adapts-1091152.html?cxtype=rss_health
[2] http://apps.who.int/ghodata/
[3] http://www.taiwantrade.com.tw/MAIN/en_front/searchserv.do? method= listNews Detail&information_id=7738&locale=8
[4] http://www.sensorsmag.com/specialty-markets/medical/news/ sensor- integration- medical-devices-growing-8369
[5] http://www.sensorsmag.com/specialty-markets/medical/sensors- facilitate- health- monitoring-8365
[6] C.R. Lowe, “Biosensors”, Trends Biotechnol., 2 (3), pp. 59–65, 1984.
[7] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors - sensor principles and architectures”, Sensors, 8, pp. 1400–1458, 2008.
[8] M.J. Schöning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs)”, Analyst, 127, pp. 1137–1151, 2002.
[9] D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, “Electrochemical biosensors: recommended definitions and classification”, Pure Appl. Chem., 71 (12), pp. 2333–2348, 1999.
[10] D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, “Electrochemical biosensors: recommended definitions and classification”, Biosens. Bioelectron., 16 (1-2), pp. 121–131, 2001.
[11] M. Yuqing, G. Jianguo, and C. Jianrong, “Ion sensitive field effect transducer-based biosensors”, Biotechnol. Adv., 21, pp. 527–534, 2003.
[12] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng., 17, pp. 70–71, 1970.
[13] M. Chudy, W. Wróblewski, A. Dybko, and Z. Brzózka, “Multi-ion analysis based on versatile sensor head”, Sens. Actuators B, 78, pp. 320–325, 2001.
[14] C. Jiménez, I. Marqués, and J. Bartolí, “Continuous-flow system for on-line water monitoring using back-side contact ISFET-based sensors”, Anal. Chem., 68, pp. 3801–3807, 1996.
[15] K. Tsukada, Y. Miyahara, Y. Shibata and H. Miyagi, “An integrated chemical sensor with multiple ion and gas sensors“, Sens. Actuators B, 2, pp. 291–295, 1990.
[16] W. Moritz, F. Lisdat, B.H. van der Schoot, N.F. de Rooij, H.H. van der Vlekkert, H.C.G. Ligtenberg, and I. Grohmann, “Flow injection analysis using pH/pF ISFET combinations for determination of very low fluoride concentrations”, Sens. Actuators B, 15–16, pp. 223–227, 1993.
[17] Z. Elbhiri, Y. Chevalier, J. M. Chovelon and N. Jaffrezic-Renault, “Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors”, Talanta, 52, pp. 495–507, 2000.
[18] J. Janata and S. Moss, “Chemically sensitive field-effect transistors”, Biomed. Eng., 11, pp. 241–245, 1976.
[19] S. Caras and J. Janata, “Field effect transistor sensitive to penicillin”, Anal. Chem., 52, pp. 1935–1937, 1980.
[20] J.F. Schenck, > in Theory, Design and Biomedical Applications of Solid State Chemical Sensors, ed. P. W. Cheung, CRC Press, Boca Raton, pp. 165–173, 1978.
[21] D.T. Jobling, J.G. Smith, and H.V. Wheal, “Active microelectrode array to record from the mammalian central nervous systemin vitro”, Med. Biol. Eng. Comput., 19, pp. 553–560, 1981.
[22] P. Fromherz, A. Offenhäusser, T. Vetter, and J. Weis, “A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor”, Science, 252, pp. 1290–1293, 1991.
[23] S. Schütz, B. Weissbecker, H.E. Hummel, M.J. Schöning, A. Riemer, P. Kordos and H. Lüth, “Host plant selection of the colorado potato beetle as influenced by damage induced volatiles of the potato plant”, Naturwissenschaften, 84, pp. 86–88, 1997.
[24] E. Souteyrand, J.P. Cloarec, J.R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen and M.F. Lawrence,” Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect”, J. Phys. Chem. B, 101, pp. 2980–2985, 1997.
[25] M.J. Schöning and A. Poghossian, “Bio FEDs (field-effect devices): state-of-the-art and new directions”, Electroanalysis, 18(19-20), pp. 1893–1900, 2006.
[26] W. Sant, M.L. Pourciel, J. Launay, T. Do Conto, A. Martinez, and P. Temple-Boyer, “Development of chemical field effect transistors for the detection of urea”, Sens. Actuators B, 95, pp. 309–314, 2003.
[27] K.Y. Park, S.B. Choi, M. Lee, B.K. Sohn, and S.Y. Choi, “ISFET glucose sensor system with fast recovery characteristics by employing electrolysis”, Sens. Actuators B, 83, pp. 90–97, 2002.
[28] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, K.P. Hsiung, and S.K. Hsiung, “Glucose ENFET doped with MnO2 powder ”, Sens. Actuators B, 76, pp. 187–192, 2001.
[29] X.L. Luo, J.J. Xu, W. Zhao, and H.Y. Chen, “A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles”, Biosens. Bioelectron., 19, pp. 1295–1300, 2004.
[30] X.L. Luo, J.J. Xu, W. Zhao, and H.Y. Chen, “Glucose biosensor based on ENFET doped with SiO2 nanoparticles”, Sens. Actuators B, 97, pp. 249–255, 2004.
[31] A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M.J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?”, Sens. Actuators B, 78, pp. 237–242, 2001.
[32] W. Sant, M.L. Pourciel-Gouzy, J. Launay, T. Do Conto, R. Colin, A. Martinez, and P. Temple-Boyer, “Development of a creatinine-sensitive sensor for medical analysis”, Sens. Actuators B, 103, pp. 260–264, 2004.
[33] A.P. Soldatkin, V.N. Arkhypova, S.V. Dzyadevych, A.V. ElNskaya, J.M. Gravoueille, N. Jaffrezic-Renault, and C. Martelet, “Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs”, Talanta, 66, pp. 28–33, 2005.
[34] A.L. Simonian, A.W. Flounders, and J.R. Wild, “FET-based biosensors for the direct detection of organophosphate neurotoxins”, Electroanalysis, 16, pp. 1896–1906, 2004.
[35] A.L. Simonian, J.K. Grimsley, A.W. Flounders, J.S. Schoeniger, T.C. Cheng, J.J. De Frank, and J.R. Wild, “Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates”, Anal. Chim. Acta, 442, pp. 15–23, 2001.
[36] S.V. Dzyadevych, T.M. Anh, A.P. Soldatkin, N.D. Chien, N. Jaffrezic-Renault, and J.M. Chovelon, “Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds”, Bioelectrochemistry, 55, pp. 79–81, 2002.
[37] V.M. Starodub and N.F. Starodub, “Electrochemical immune sensors based on the ion-selective field effect transistor for the determination of the level of myoglobin. In: M. Bartek, Editor”, The 13th European Conference on Solid-State Transducers, pp. 185–188, Delft University of Technology, The Hague (The Netherlands), September 12–15, 1999.
[38] F. Hafner, “Cytosensor® Microphysiometer: technology and recent applications”, Biosens. Bioelectron., 15, pp. 149–158, 2000.
[39] P. Bergveld, “Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology”, IEEE Trans. Biomed. Eng., 19, pp. 342–351, 1972.
[40] A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection”, Sens. Actuators B, 32, pp. 41–48, 1996.
[41] A. Poghossian and M.J. Schöning, “Detecting both physical and (bio-)chemical parameters by means of ISFET devices”, Electroanalysis, 16 (22), pp. 1863–1872, 2004.
[42] H.H. van den Vlekkert, U.H. Verkerk, P.D. van der Wal, A. van Wingerden, D.N. Reinhoudt, J.R. Haak, G.W.N. Honig, and H.A.J. Holterman, “Multiion sensing device for horticultural application based upon chemical modification and special packaging of ISFETs”, Sens Actuators B, 6, pp. 34–37, 1992.
[43] V. Volotovsky and N. Kim, “Determination of glucose, ascorbic and citric acids by two-ISFET multienzyme sensor”, Sens. Actuators B, 49, pp. 253–257, 1998.
[44] A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz and I. Willner, “Enzyme monolayer-functionalized field-effect transistors for biosensor applications”, Sens. Actuators B, 70, pp. 222–231, 2000.
[45] A. Offenhäusser and W. Knoll, “Cell-transistor hybrid systems and their potential applications”, Trends Biotechnol., 19, pp. 62–66, 2001.
[46] http://www.intel.com/technology/silicon/45nm_technology.htm
[47] W.-Y. Chung, C.-H. Yang, D.G. Pijanowska, A. Krzyskow, and W. Torbicz, “ISFET interface circuit embedded with noise rejection capability”, Electron. Lett., 40, pp. 1115–1116, 2004.
[48] M.J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoš, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sens. Actuators B, 35, pp. 228–233, 1996.
[49] J.C. Chou and Y.F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method”, Sens. Actuators B, 86, pp. 58–62, 2002.
[50] S. Jamasb, S. Collins, and R.L. Smith, “A physical model for drift in pH ISFETs”, Sens. Actuators B, 49, pp. 146–155, 1998.
[51] T. Mikolajick, R. Kuhnhold, and H. Ryssel, The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition, Sens. Actuators B, 44, pp. 262–267, 1997.
[52] Y.-H. Liao and J.-C. Chou, “Drift and hysteresis characteristics of drug sensors based on ruthenium dioxide membrane”, Sensors, 8, pp. 5386–5396, 2008.
[53] P. Woias, L. Meixner, and P. Frostl, ‘‘Slow pH response effects of silicon nitride ISFET sensors,’’ Sens. Actuators B, 48, pp. 501–504, 1998.
[54] L. Bousse and P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators, 6, pp. 65–78, 1984.
[55] J.-C. Chou and C.-Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET”, Mater. Chem. Phys., 71, pp. 120–124, 2001.
[56] Y. Umezawa, K. Umezawa, and H. Sato, “Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KpotA,B values”, Pure & Appl. Chern., 67 (3), pp. 507–518, 1995.
[57] N.H. Chou and J.C. Chou, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sensors J., 5 (6), pp. 1362–1368, 2005.
[58] D.N. Reinhoudt, J.F.J. Engbersen, Z. Brzózka, H.H. van den Vlekkert, G.W.N. Honig, H.A.J. Holterman, and U.H. Verkerk, “Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes”, Anal. Chem., 66, pp. 3618–3623, 1994.
[59] J. Wolstenholme and J.F. Watts, “An introduction to surface analysis by XPS and AES”, New York, Wiley, 2003.
[60] http://www.veeco.com/
[61] T. Matsuo, M. Esahi, and H. Abe, “pH ISFET using Al2O3, Si3N4 and SiO2 gate thin films”, IEEE Trans. Electron Devices, ED-26, pp. 1856–1857, 1979.
[62] C.G. Jakobson, U. Dinnar, M. Feinsod, Y. Nemirovsky, “Ion-sensitive field-effect transistors in standard CMOS fabricated by post processing”, IEEE Sensors J., 2, pp. 279–286, 2002.
[63] T. Mikolajick, R. Kuhnhold, and H. Ryssel, “The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition, Sens. Actuators B, 44, pp. 262–267, 1997.
[64] C.N. Tsai, J.C. Chou, T.P. Sun, and S.K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode”, Sens. Actuators B, 108, pp. 877–882, 2005.
[65] Y.H. Liao and J.C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sens. Actuators B, 128, pp. 603–612, 2008.
[66] http://www.itrs.net/Links/2010ITRS/Home2010.htm
[67] J.C. Wang, D.C. Shie, T.F. Lei, and C.L. Lee, “Turnaround of hysteresis for capacitance-voltage characteristics of hafnium oxynitride dielectrics”, Appl. Phys. Lett., 84, pp. 1531–1533, 2004.
[68] J. Robertson, “High dielectric constant oxides”, Eur. Phys. J. Appl. Phys., 28, pp. 265–291, 2004.
[69] B.H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J.C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Appl. Phys. Lett., 76, pp. 1926–1928, 2000.
[70] B. Cheng, M. Cao, R. Rao, A. Inain, P.V. Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, P.M. Zeitzoff, and J.C.S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs”, IEEE Trans. Electron Devices, 46, pp. 1537–1544, 1999.
[71] J. Robertson, “Band offsets of high dielectric constant gate oxides on silicon”, J. Non-Cryst. Solids, 303, pp. 94–100, 2002.
[72] K.L. Ng, N. Zhan, C.W. Kok, M.C. Poon, and H. Wong, “Electrical characterization of the hafnium oxide prepared by direct sputtering of Hf in oxygen with rapid thermal annealing”, Microelectron. Reliab., 43, pp. 1289–1293, 2003.
[73] S.-W. Nam, J.-H. Yoo, S. Nam, H.-J. Choi, D. Lee, D.-H. Ko, J. H. Moon, J.-H. Ku, and S. Choi, “Influence of annealing condition on the properties of sputtered hafnium oxide”, J. Non-Cryst. Solids, 303, pp. 139–143, 2002.
[74] R.M. Wallace and G. Wilk, “High-κ gate dielectric materials”, MRS Bull., 27 (3), pp. 192–197, 2002.
[75] P. Raghu, N. Rana, C. Yim, E. Shero, and F. Shadman, “Adsorption of moisture and organic contaminants on hafnium oxide, zirconium oxide, andsilicon oxide gate dielectrics”, J. Electrochem. Soc., 150, F186–F193, 2003.
[76] C.H. Choi, S.J. Rhee, T.S. Jeon, N. Lu, J.H. Sim, R. Clark, M. Niwa, and D.L. Kwong, “Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode”, Tech. Dig. - Int. Electron Devices Meet., pp. 857–860, 2002.
[77] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M.N. Semeria, Y. Morand, J.F. Damlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P. Leduc, M. Rivoire, S. Jullian, and R. Pantel, “High performance 40 nm nMOSFETs with HfO2 gate dielectric and polysilicon damascene gate”, Tech. Dig. - Int. Electron Devices Meet., pp. 429–432, 2002.
[78] M. Koyama, A. Kaneko, T. Ino, M. Koike, Y. Kamata, R. Iijima, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, S. Inumiya, M. Takayanagi, and A. Nishiyama, “Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics”, Tech. Dig. - Int. Electron Devices Meet., pp. 849–852, 2002.
[79] W.J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T.P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Device Lett., 23, pp. 649–651, 2002.
[80] Y.S. Lin, R. Puthenkovilakam, and J.P. Chang, “Dielectric property and thermal stability of HfO2 on silicon”, Appl. Phys. Lett., 81 (11), pp. 2041–2043, 2002.
[81] W.C. Lee, Y.J. Lee, Y.D. Wu, P. Chang, Y.L. Huang, Y.L. Hsu, J.P. Mannaerts, R.L. Lo, F.R. Chen, S. Maikap, L.S. Lee, W.Y. Hsieh, M.J. Tsai, S.Y. Lin, T. Gustffson, M. Hong, J. Kwo, “MBE-grown high k gate dielectrics of HfO2 and (Hf–Al)O2 for Si and III–V semiconductors nano-electronics”, J. Cryst. Growth, 278, pp. 619–623, 2005.
[82] S. Lee and D.L. Kwong, “Dual poly-Si gate metal oxide semiconductor field effect transistors fabricated with high-quality chemical vapor deposition HfO2 gate dielectrics”, Jpn. J. Appl. Phys., 42, pp. 7256–7258, 2003.
[83] H. Gr¨uger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, “High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing”, Thin Solid Films, 447/448, pp. 509–515, 2004.
[84] S. Nam, S.W. Nam, J.H. Yoo, D.H. Ko, “Interface control by modified sputtering on Pt/HfO2/Si system”, Mater. Sci. Eng. B, 102, pp. 123–127, 2003.
[85] R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ionassisted deposition and plasma ion-assisted deposition”, Thin Solid Films, 410, pp. 86–93, 2002.
[86] H. Ikeda, S. Goto, K. Honda, M. Sakashita, A. Sakai, S. Zaima, and Y. Yasuda, “Structural and Electrical Characteristics of HfO2 Films Fabricated by Pulsed Laser Deposition”, Jpn. J. Appl. Phys., 41, pp. 2476–2479, 2002.
[87] D.M. Hausmann and R.G. Gordon, “Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films”, J. Cryst. Growth, 249, pp. 251–261, 2003.
[88] M. Leskela and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films, 409, pp. 138– 146, 2002.
[89] http://gcep.stanford.edu/research/factsheets/atomic_layer_ deposition.html
[90] http://bentgroup.stanford.edu/Research/research_ALD.html
[91] P.D. van der Wal, D. Briand, G. Mondin, S. Jenny, S. Jeanneret, C. Millon, H. Roussel, C. Dubourdieu, and N.F. de Rooij, “High-k dielectrics for use as ISFET gate oxides”, Proceedings of the IEEE Sensors, 2, pp. 677–680, 2004.
[92] G.He, M.Liu, L.Q. Zhu, M.Chang, Q.Fang, L.D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Sci., 576, pp. 67–75, 2005.
[93] D.E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc., 70, pp. 1807–1818, 1974.
[94] V.K. Khanna, A. Kumar, Y.K. Jain, and S. Ahmad, “Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor”, Int. J. Electron., 93, pp. 81–96, 2006.
[95] T. Mikolajick, R. Kuhnhold, R. Schnupp, and H. Ryssel, “The influence of surface oxidation on the pH-sensing properties of silicon nitride”, Sens. Actuators B, 58, pp. 450–455, 1999.
[96] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications”, IEEE Trans. Biomed. Eng., 48, pp. 340–344, 2001.
[97] A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, G. Claudio, Y. Jakobson, and Nemirovsky, “CMOSreadout circuitry for ISFET microsystems”, Sens. Actuators B, 97, pp. 122–131, 2004.
[98] W.Y. Chung and C.H. Yang, “A new body-effect elimination technique for ISFET measurement”, Proceeding of the IEEE Sensors, 2, pp. 1046–1049, 2005.
[99] Yuan Taur and Tak H. Ning, “Fundamentals of Morden VLSI Devices”, Cambridge, 1998.
[100] Chou JC and Wang YF, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method”, Sens Actuator B, 86, pp. 58–62, 2002.
[101] Bousse L, Mostarshed S, Schoot BVD, and Rooij NFD, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sens Actuator B, 17, pp. 157–164, 1994.
[102] C.-S. Lai, C.-M. Yang, and T.-F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing”, Electrochem. Solid State Lett., 9 (3), pp. G90– G92, 2006.
[103] M. Yuqing, C. Jianrong, and F. Keming, “New technology for the detection of pH”, J. Biochem. Biophys. Methods, 63, pp. 1–9, 2005.
[104] B. Premanode and C. Toumazou, “A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis”, Sens. Actuators B, 120, pp. 732 –735, 2007.
[105] D. Goncalves, D.M.F. Prazeres, V. Chu, and J.P. Conde, “Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors”, Biosens. Bioelectron., 24, pp. 545–551, 2008.
[106] B.A. McKinley, “ISFET and Fiber Optic Sensor Technologies: In Vivo Experience for Critical Care Monitoring”, Chem. Rev., 108, pp. 826–844, 2008.
[107] L.-B. Chang, H.-H. Ko, Y.-L. Lee, C.-S. Lai, and C.-Y. Wang, “The electrical and pH-sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., 153 (4), pp. G330–G332, 2006.
[108] K.-M. Chang, K.-Y. Chao, T.-W. Chou, and C.-T. Chang, “Characteristics of zirconium oxide gate ion-sensitive field-effect transistors,” Jpn. J. Appl. Phys., 46, pp. 4333–4337, 2007.
[109] C.-Y. Chen, J.-C. Chou, and H.-T. Chou, “Defect generation for a hydrated layer and thermal stability based on Ba0.7Sr0.3TiO3/SiO2 as H+ sensitive layer in ion-sensitive field-effect transistor devices,” Jpn. J. Appl. Phys., 48, p. 045501, 2009.
[110] P.-K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD,” Appl. Surf. Sci., 214, pp. 214–221, 2003.
[111] T.-M. Pan, J.-C. Lin, M.-H. Wu, and C.-S. Lai, “Study of high-k Er2O3 thin layer as ISFET sensitive insulator surface for pH detection,” Sens. Actuators B, 138, pp. 619–624, 2009.
[112] W. M. Siu, and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects,” IEEE Trans. Electron Devices, ED-26, pp. 1805–1815, 1979.
[113] L. K. Meixner, and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sens. Actuators B, 6, pp. 315–318, 1992.
[114] S.-R. Leea, K. Sawada, H. Takao, and M. Ishida, “An enhanced glucose biosensor using charge transfer techniques”, Biosens. Bioelectron., 24, pp. 650–656, 2008.
[115] T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Characteristics of Highly Sensitive pH Sensors with Charge Accumulation Operation”, Jpn. J. Appl. Phys., 48, pp. 9259–9263, 2009.
[116] K. Sawada, T. Shimada, T. Ohshina, H. Takao, and M. Ishida, “Highly sensitive ion sensors using charge transfer technique,” Sens. Actuators B, 98, pp. 69–72, 2004.
[117] F. Bendriaa, F. L. Bihan, A. C. Salaün, T. M.-Brahim, and O. Bonnaud, “Study of mechanical stability of suspended bridge devices used as pH sensors,” J. Non-Cryst. Solids, 352, pp. 1246–1249, 2006.
[118] H. Mahfoz-Kotb, A.C. Salaün, F. Bendriaa , F. Le Bihan, T. Mohammed- Brahim, J.R. Morante, “Sensing sensibility of surface micromachined suspended gate polysilicon thin film transistors”, Sens. Actuators B, 118, pp. 243–248, 2006.
[119] T. Hirokane, H. Hashimoto, D. Kanzaki, S. Urabe, K. Arima, J. Uchikoshi, and M. Morita, “Metal-insulator-gap-insulator- semiconductor structure for sensing devices,” Anal. Sci., 25, pp. 101–104, 2009.
[120] O. Knopfmacher, A. Tarasov, Wanġyang Fu, M. Wipf, B. Niesen, M. Calame, and C. Schönenberger, “Nernst Limit in Dual-Gated Si-Nanowire FET Sensors”, Nano Lett., 10, pp. 2268–2274, 2010.
[121] D. Kahng and S. M. Sze, “A Floating Gate and Its Application to Memory Devices”, Bell Syst. Tech. J., 46, pp. 1288, 1967.
[122] Y. Wang, Y. Zhao, B.M. Khan, C.L. Doherty, J.D. Krayer, and M.H. White, “A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase”, Solid-State Electronics, 48, pp. 2031–2034, 2004.
[123] S. J. Wrazien, Y. Zhao, J.D. Krayer, and M.H. White, “Characterization of SONOS oxynitride nonvolatile semiconductor memory devices”, Solid-State Electronics, 47, pp. 885–891, 2003.
[124] S. Huang and S. Oda, “Charge storage in nitrided nanocrystalline silicon dots”, Appl. Phys. Lett., 87, pp. 173107-1–173107-3, 2005.
[125] Y.-H. Lin, C.-H. Chien, C.-T. Lin, C.-Y. Chang, and T.-F. Lei, “High-Performance Nonvolatile HfO2 Nanocrystal Memory”, IEEE Trans. Electron. Lett., 26, pp. 154–156, 2005.
[126] J.D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol., 1 (1), pp. 72–77, 2002.
[127] J.-C. Wang, C.-S. Lai, Y.-K. Chen, C.-T. Lin, C.-P. Liu, Michael R.S. Huang, and Y.-C. Fangc, “Characteristics of Gadolinium Oxide Nanocrystal Memory with Optimized Rapid Thermal Annealing”, Electrochem. Solid State Lett., 12 (6), pp. H202– H204, 2009.
[128] C.D. Fung, P.W. Cheung, W.H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Trans. Electron Devices, 33, pp. 8–18, 1986.
[129] P. Bergveld, A. van den Berg, P.D. van der Wal, M. Skowronska-Ptasinska, E.J.R. Sudhölter, D.N. Reinhoudt, “How electrical and chemical requirements for REFETs may coincide”, Sens. Actuators, 18, pp. 309–327, 1989.
[130] A. Errachid, J. Bausells, N. Jaffrezic-Renault, “A simple REFET for pH detection in differential mode”, Sens. Actuators B, 60, pp. 43–48, 1999.
[131] M.-H. Wu, C.-D. Lee, and T.-M. Pan, “High dielectric constant PrYxOy sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea”, Anal. Chim. Acta, 651, pp. 36–41, 2009.
[132] M.-H.Wu, C.-H. Cheng, C.-S. Lai, and T.-M. Pan, “Structural properties and sensing performance of high-k Sm2O3membrane- based electrolyte-insulator- semiconductor for pH and urea detection”, Sens. Actuators B, 138, pp. 221–227, 2009.
[133] L.M. Shepherd and C. Toumazou, “A biochemical translinear principle with weak inversion ISFETs”, IEEE Trans. Circuits Syst., 52, pp. 2614–2619, 2005.
[134] Y. Yang, A. Purwar, and M. H. White, “Reliability considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electron., 43, pp. 2025–2032, 1999.
[135] A. Errachid, J. Bausells, N. Zine, H. Jaffrezic, C, Martelet, N. Jaffrezic- Renault, and M. Charbonnier, “Analytical features of K+-sensitive membranes obtained by implantation in silicon dioxide films”, Mat. Sci. Eng. C, 21, pp. 9–13, 2002.
[136] S. Khumpuang, M. Horade, K. Fujioka, and S. Sugiyama, “Portable blood extraction device integrated with bio-medical monitoring system”, Proc. of the International Society for Optical Engineering, 6037, pp. 60370J1–60370J8, 2006.
[137] J. Alonso, J. Artigas, and C. Jiménez, “Analysis and identification of several apple varieties using ISFET sensors”, Talanta, 59, pp. 1245–1252, 2003.
[138] J. Artigas, C. Jiménez, C. Domínguez, S. Mínguez, A. Gonzalo, J. Alonso, “Development of a multiparametric analyser based on ISFET sensors applied to process control in the wine industry”, Sens. Actuators B, 89, pp. 199–204, 2003.
[139] A. Rudnitskaya, A. Ehlert, A. Legin, Yu. Vlasov, and S. Büttgenbach, “Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater”, Talanta, 55, pp. 425–431, 2001.
[140] T. Yoshinobu, M.J. Schöning, R. Otto, K. Furuichi, Yu. Mourzina, Yu. Ermolenko, and H. Iwasaki, „Portable light-addressable potentiometric sensor (LAPS) for multisensor applications“, Sens. Actuators B, 95, pp. 352–356, 2003.
[141] N.H. Chou, J.C. Chou, T.P. Sun, and S.K. Hsiung, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sens. J., 5 (6), pp. 1362–1368, 2005.
[142] Yu. Mourzina, Th. Mai, A. Poghossian, Yu. Ermolenko, T. Yoshinobu, Yu. Vlasov, H. Iwasaki, and M.J. Schöning, “K+-selective field-effect sensors as transducers for bioelectronic applications”, Electrochim. Acta, 48, pp. 3333–3339, 2003.
[143] F. Phillips, K. Kaczor, N. Gandhi, B.D. Pendley, R.K. Danish, M.R. Neuman, B. Toth, V. Horvath, and E. Lindner, “Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds”, Talanta, 74, pp. 255–264, 2007.
[144] O.H. LeBlanc Jr., W.T. Grubb, Long-lived potassium ion selective polymer membrane electrode, Anal. Chem., 48, pp. 1658-1660, 1976.
[145] Y. Qin, S. Peper, and E. Bakker, “Plasticizer-free polymer membrane ion-selective electrodes containing a methacrylic copolymer matrix”, Electroanalysis, 14, pp. 1375–1381, 2002.
[146] Z.M. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, and A. Plantier, “K+-ISFET type microsensors fabricated by ion implantation”, Mater. Chem. Phys., 48, pp. 56–59, 1997.
[147] E.A. Moschou and N.A. Chaniotakis, “Potassium selective CHEMFET based on an ion-partitioning membrane”, Anal. Chim. Acta, 445, pp. 183-190, 2001.
[148] S. Yoshida, N. Hara, and K. Sugimoto, “Development of a wide range pH sensor based on electrolyte-insulator-semiconductor structure with corrosion-resistant Al2O3-Ta2O5 and Al2O3-ZrO2 double-oxide thin films”, J. Electrochem.l Soc., 151, pp. H53–H58, 2004.
[149] N. Hara, S. Nagata, N. Akao, and K. Sugimoto, “Formation of Al2O3-Ta2O5 double-oxide thin films by low-pressure MOCVD and evaluation of their corrosion resistances in acid and alkali solutions”, J. Electrochem. Soc., 146, pp. 510–516, 1999.
[150] W.C. Wu, C.S. Lai, J.C. Wang, J.H. Chen, M.W. Ma, T.S. Chao, “High-performance HfO2 gate dielectrics fluorinated by postdeposition CF4 plasma treatment”, J. Electrochem. Soc., 154 (7), pp. H561–H565, 2007.
[151] C.S. Lai, W.C. Wu, J.C. Wang, and T.S. Chao, “Characterization of CF4-plasma fluorinated HfO2 gate dielectrics with TaN metal gate”, Appl. Phys. Lett., 86, pp. 222905, 2005.
[152] B.J.O’Sullivan, V.S. Kaushik, J.-L. Everaert, L. Trojman, L.-Å. Ragnarsson, L. Pantisano, E. Rohr, S. DeGendt, and M. Heyns, “Effectiveness of nitridation of hafnium silicate dielectrics: a comparison between thermal and plasma nitridation”, IEEE Trans. Electron Devices, 54 (7), pp. 1771–1775, 2007.
[153] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, S.-K. Hsiung, “Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications”, IEEE Trans. Biomed. Eng., 48 (3), pp. 340–344, 2001.
[154] C.-S. Lai, C.-E. Lue, C.-M. Yang, J.-H. Jao, and C.-C. Tai, “New pH-sensitive TaOxNy membranes prepared by NH3 plasma surface treatment and nitrogen incorporated reactive sputtering”, Sens. Actuators B, 130, pp. 77–81, 2008.
[155] P. Bayiati, A. Malainou, E. Matrozos, A. Tserepi, P.S. Petrou, S.E. Kakabakos, and E. Gogolides, “High-density protein patterning through selective plasma-induced fluorocarbon deposition on Si substrates”, Biosens. Bioelectron., 24, pp. 2979–2984, 2009.
[156] C.-S. Lai, C.-M. Yang, and T.-F. Lu, “Thickness effects on pH response of HfO2 sensing dielectric improved by rapid thermal annealing”, Jpn. J. Appl. Phys., 45, pp. 3807–3810, 2006.
[157] C.-M. Yang, C.-S. Lai, T.-F. Lu, T.-C. Wang, and D.G. Pijanowska, “Drift and hysteresis effects improved by RTA treatment on hafnium oxide in pH-sensitive applications”, J. Electrochem. Soc., 155 (11), pp. J326–J330, 2008.
[158] C.-S. Lai, T.-F. Lu, C.-M. Yang, Y.C. Lin, D.G. Pijanowska, and B. Jaroszewicz, “Body effect minimization using single layer structure for pH-ISFET applications”, Sens. Actuators B, 143, pp. 494–499, 2010.
[159] M. Kosmulski, “Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2”, Langmuir, 13, pp. 6315–6320, 1997.
[160] R.E.G. van Hal, J.C.T. Eijkel, and P. Bergveld, “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Adv. Colloid Interface Sci., 69, pp. 31–62, 1996.
[161] M. Anik and T. Cansizoqlu, “Dissolution kinetics of WO3 in acidic solutions”, J. Appl. Electrochem., 36, pp. 603–608, 2006.
[162] M. Kosmulski, “The pH-dependent surface charging and the points of zero charge”, J. Colloid Interface Sci., 253, pp.77–87, 2002.
[163] J.-C. Chou and J.-L. Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing”, Sens. Actuators B, 62, pp. 81–87, 2000.
[164] J.-C. Chou and J.-L. Chiang, “Study on the amorphous tungsten trioxide ion-sensitive field effect transistor”, Sens. Actuators B, 66, pp. 106–108, 2000.
[165] J. Koo and H. Jeon, “Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications”, J. Korean Phys. Soc., 46, pp. 945–950, 2005.
[166] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, “Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells”, Smart Mater. Struct., 15, pp. 877–888, 2006.
[167] L. Bousse and P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators, 6, pp. 65–78, 1984.
[168] J.-L. Chiang, J.-C. Chou, Y.-C. Chen, G.-S. Liau, and C.-C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor”, Jap. J. Appl. Phys., 42, pp. 4973–4977, 2003.
[169] A.A. Poghossian, “Determination of the pHpzc of insulators surface from capacitance-voltage characteristics of MIS and EIS structures”, Sens. Actuators B, 44, pp. 551–553, 1997.
[170] P.R. Barabash, R.S.C. Cobbold, and W.B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator- semiconductor field-effect transistors (EISFET's)”, IEEE Trans. Electron Devices, 34, pp. 1271–1282, 1987.
[171] D.A. Neamen, “Semiconductor Physics and Devices”, 2nd edition, McGraw-Hill, Chapter 8,1997.
[172] J.-C. Chou and L.-P. Liao, “Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method”, Thin Solid Films, 476, pp. 157–161, 2005.
[173] T. Ito, H. Inagaki, and I. Igarashi, “ISFET's with ion-sensitive membranes fabricated by ion implantation”, IEEE Trans. Electron Devices, 35, pp. 56–64, 1988.
[174] M.B. Ali, R. Kalfat, S. Sfihi, J.M. Chovelon, H.B. Ouada, N. Jaffrezic-Renault, “Sensitive cyclodextrin–polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection“, Sens. Actuators B, 62, pp. 233–237, 2000.
[175] N.-H. Chou, J.-C. Chou, T.P. Sun, and S.-K. Hsiung, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes”, IEEE Sens. J., 5, pp. 1362–1368, 2005.
[176] K. Tai, S. Yamaguchi, K. Tanaka, T. Hirano, I. Oshiyama, S. Kazi, T. Ando, M. Nakata, and M. Yamanaka, “Threshold voltage modulation technique using fluorine treatment through atomic layer deposition TiN suitable for complementary metal-oxide-semiconductor devices”, Jpn. J. Appl. Phys., 47 (4), pp. 2345–2348, 2008.
[177] W.J. Maeng, J.Y. Son, and H. Kim, “Effects of fluorine plasma treatment on the electronic structure of plasma-enhanced atomic layer deposition HfO2”, J. Electrochem. Soc., 156 (5), pp. G33–G330, 2009.
[178] K. Seo, R. Sreenivasan, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. - Int. Electron Devices Meet., pp. 417, 2005.
[179] M. Inoue, S. Tsujikawa, M. Mizutani, K. Nomura, T. Hayashi, K. Shiga, J. Yugami, J. Tsuchimoto, Y. Ohno, and M. Yoneda, Tech. Dig. - Int. Electron Devices Meet., pp. 413, 2005.
[180] W. Chen, Q.-Q. Sun, S.-J. Ding, D.-W. Zhang, L.-K. Wang, “First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide”, Appl. Phys. Lett., 89, pp. 152904-1–152904-3, 2006.
[181] K. Tse and J. Robertson, “Defect passivation in HfO2 gate oxide by fluorine”, Appl. Phys. Lett., 89, pp. 142914-1–142914-3, 2004.
[182] S.J. Ding, Y.J. Huang, Q.Q. Sun, W. Zhang, “Physical and electrical characterization of fluorine plasma treated hafnium oxide film for high density metal-insulator-metal capacitors”, ECS Trans., 25 (6), pp. 209–217, 2009.
[183] J.H. Thomas III, “Surface modification by plasmas: x-ray photoemission studies”, J. Vac. Sci. Technol. B, 7 (5), pp. 1236–1243, 1989.
[184] A.C. Miller, F.P. McCluskey, and J.A. Taylor, “An x-ray photoelectron spectroscopy study of aluminum surfaces treated with fluorocarbon plasmas”, J. Vac. Sci. Technol. A, 9 (3), pp. 1461–1465, 1991.
[185] K.-S. Song, T. Sakai, H. Kanazawa, Y. Araki, H. Umezawa, M. Tachiki, and H. Kawarada, “Cl- sensitive biosensor used electrolyte-solution-gate diamond FETs”, Biosens. Bioelectron., 19, pp. 137–140, 2003.
[186] K. Hirama, H. Takayanagi, S. Yamauchi, Y. Jingu, H. Umezawa, H. Kawarada, “Diamond MISFETs fabricated on high quality polycrystalline CVD diamond”, Proc. of the International Symposium on Power Semiconductor Devices & ICs, Jeiu, Korea, pp. 269-272, May 27–30, 2007.
[187] P. Temple-Boyer, A. Benyahia, W. Sant, M.L. Pourciel-Gouzy, J. Launay, and A. Martinez, “Modelling of urea-EnFETs for haemodialysis applications”, Sens. Actuators B, 131, pp. 525–532, 2008.
[188] F. Kuralay, H. Özyörük, and A. Yildiz, “Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film”, Sens. Actuators B, 109, pp. 194–199, 2005.
[189] G. Dhawan, G. Sumana, and B.D. Malhotra, “Recent developments in urea biosensors”, Biochem. Eng. J., 44, pp. 42–52, 2009.
[190] J. Carlsson and J. Bergström, “The diurnal variation in cow's milk and how milk fat content, storage and preservation affects analysis by a flow injection technique”, Acta Vet. Scand., 35, pp. 67–77, 1994.
[191] J.L.F.C. Lima, C. Delerue-Matos, and M.C.V.F. Vaz, “Flow injection system with potentiometric detection for the determination of urea content in milks”, J. Agric. Food Chem., 46, pp. 1386–1389, 1998.
[192] L. Goeyens, N. Kindermans, M.A. Yusuf, and M. Elskens, “A room temperature procedure for the manual determination of urea in seawater”, Estua. Coast. Shelf Sci., 47, pp. 415–418, 1998.
[193] C.J. Patton and S.R. Crouch, “Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia”, Anal. Chem., 49, pp. 464–469, 1977.
[194] A. Ramsing, J. Ruzicka, and E.H. Hensen, “A new approach to enzymatic assay based on flow-injection spectrophotometry with acid-base indicators”, Anal. Chim. Acta, 114, pp. 165–181, 1980.
[195] F. Roch-Ramel, “An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens”, Anal. Biochem., 21, pp. 372–381, 1967.
[196] D.G. Pijanowska and W. Torbicz, “pH-ISFET based urea biosensor”, Sens. Actuators B, 44, pp. 370–376, 1997.
[197] S. Arisawa, T. Arise, and R. Yamamoto, “Concentration of enzymes adsorbed onto Langmuir films and characteristics of a urea sensor”, Thin Solid Films, 209, pp. 259–263, 1992.
[198] Y. Hanazato, K. Inatomi, G. Nakako, and M. Maeda, “Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors”, IEEE Trans. on Electron Devices, ED-33, pp. 47–51, 1986.
[199] N. Das, P. Prabhakar, A.M. Kayastha, and R.C. Srivastava, “Enzyme entrapped inside the reversed micelle in the fabrication of a new urea sensor”, Biotechnol. Bioeng., 54, pp. 329–332, 1997.
[200] B.H. van der Schoot and P.Bergveld, “The pH static enzyme Sensor”, Anal. Chim. Acta, 199, pp. 157–160, 1987.
[201] B.H. van der Schoot and P.Bergveld, “ ISFET based enzyme sensors”, Biosens. Bioelectron., 3, pp. 161–186, 1987/88.
[202] Rajesh, V. Bisht, W. Takashima, and K. Kaneto, “An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film”, Biomaterials, 26, pp. 3683–3690, 2005.
[203] Karube, E.Tamiya, J.M. Dicks, and M.Gotoh, “A microsensor for urea based on an ion-selective field effect transistor”, Anal. Chim. Acta, 185, pp. 195–200, 1986.
[204] S. Alegret, J. Bartrolí, C. Jiménez, E. Martínez-Fàbregas, D. Martorell, F. Valdés-Perezgasga, “ISFET-based urea biosensor”, Sens. Actuators B, 16, pp. 453–457, 1993.
[205] F. Gardies, N. Jaffrezic-Renault, C. Martelet, H. Perrot, J.-M. Valleton, and S. Alegret “Micro-enzyme field effect transistor sensor using direct covalent bonding of urease”, Anal. Chim. Acta, 231, pp. 305–308, 1990.
[206] http://www.rpi.edu/dept/chem-eng/Biotech-Environ/IMMOB/ goel2nd.htm
[207] W.J. Cho and H.J. Huang, “An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode”, Anal. Chem., 70, pp. 3946–3951, 1998.
[208] J. Magalhes and A. Machado, “Urea potentiometric biosensor based on urease immobilized on chitosan membranes”, Talanta, 47, pp. 183–191, 1998.
[209] W.Y. Lee, K.S. Lee, T.H. Kim, M.C. Shin, and J.K. Park, “Microfabricated conductometric urea biosensor based on sol-gel immobilized urease”, Electroanalysis, 12, pp. 78–82, 2000.
[210] H.M. Chen and E.J. Wang, “Optical urea biosensor based on ammonium ion selective membrane”, Anal. Lett., 33, pp. 997–1011, 2000.
[211] Y.J. Xu, C.Y. Lu, Y. Hu, L.H. Nie, and S.Z. Yao, “Preparation of urea sensors with a series piezoelectric crystal device”, Anal. Lett., 29, pp. 1069–1080, 1996.
[212] S. Caras and J. Janata, “Field effect transistor sensitive to penicillin”, Anal. Chem., 52, pp. 1935–1937, 1980.
[213] V.R.S. Babu, M.A. Kumar, N.G. Karanth, and M.S. Thakur, “Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications”, Biosens. Bioelectron., 19, pp. 1337–1341, 2004.
[214] H.H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports“, Appl. Biochem. Biotechnol., 41, pp. 157–188, 1993.
[215] S. Libertino, F. Giannazzo, V. Aiello, A. Scandurra, F. Sinatra, M. Renis, and M. Fichera, “XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces“, Langmuir, 24, pp. 1965-1972, 2008.
[216] J. Hernando, T. Pourrostami, J.A. Garrido, O.A. Williams, D.M. Gruen, A. Kromka, D. Steinmüller, and M. Stutzmann, “Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond”, Diam. Relat. Mat., 16, pp. 138–143, 2007.
[217] S.W. Park, Y.I. Kim, K.H. Chung, S.I. Hong, and S.W. Kim, “Covalent immobilization of GL-7-ACA acylase on silica gel through silanization”, React. Funct. Polym., 51, pp. 79–92, 2002.
[218] Q. Yang, P. Atanasov, E. Wilkins, and R.C. Hughes, “Enzyme Electrodes with Glucose Oxidase Immobilized on Stöber Glass Beads Analytical Letters”, Anal. Lett., 28, pp. 2439–2457, 1995.
[219] I.H. Segel, Biochemical calculations, in: Henri–Michaelis–Menton Equation, 2nd ed., John Wiley & Sons, pp. 214–216, 1976.
[220] M.J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning -in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EISstructure”, Sens. Actuators B, 111-112, pp. 423-429, 2005.
[221] J.-L. Chiang, S.-S. Jan, J.-C. Chou, and Y.-C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide”, Sens. Actuators B, 76, pp. 624–628, 2001.
[222] P.-K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci., 214, pp. 214–221, 2003.
[223] L. Bousse, S. Mostarshed, B. van der Shoot, N.F. de Rooij, P. Gimmel, and Wolfgang Göpel, “Zeta potential measurements of Ta2O5 and SiO2 thin films”, J. Colloid Interface Sci., 147, pp. 22–32, 1991.
[224] J.A. Garrido, A. Härtl, S. Kuch, and M. Stutzmann, “pH sensors based on hydrogenated diamond surface”, Appl. Phys. Lett., 86, pp. 073504-1–073504-31, 2005.
[225] M. Zayats, O.A. Raitman, V.I. Chegel, A.B. Kharitonov, and I. Willner, “Probing antigen−antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors”, Anal. Chem., 74 (18), pp. 4763–4773, 2002.
[226] R.R.K. Reddy, A. Chadha, and E. Bhattacharya, “Porous silicon based potentiometric triglyceride biosensor”, Biosens. Bioelectron., 16, pp. 313–317, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊