跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張峰瑜
研究生(外文):Feng Yu Chang
論文名稱:高速傅域鎖模雷射開發於光學同調斷層掃描系統之應用
論文名稱(外文):Development of Fourier Domain Mode Locking laser for Optical Coherence Tomography Study
指導教授:蔡孟燦
指導教授(外文):M. T. Tsai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:82
中文關鍵詞:光學同調斷層掃描傅域鎖模雷射光學檢測
外文關鍵詞:Optical Coherence TomographyFourier Domain Mode LockingOptical inspection
相關次數:
  • 被引用被引用:5
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中主要是開發一傅域鎖模雷射作為光學同調斷層掃描系
統的雷射光源,另外在此論文中,我們也將光學同調斷層掃描系統應
用於工業產品檢測、人體皮膚掃描與作為果蠅心臟功能評估工具。雷
射光源於光學同調斷層掃描系統中,為一關鍵設備,其性能決定了系
統的縱向解析度與成像造影速度。本論文所開發的傅域鎖模雷射,其
掃描速度可達240 kHz,輸出功率大於20 mW 以及中心波長為1310
nm、頻譜掃描範圍約為80 nm,相較於商用掃描式雷射具有較快的掃
描速度與相位穩定性。另外,此高速掃頻式雷射也能有效地減少在成
像過程中,因非預期的待測物運動所造成的影像失真。應用光學同調
斷層掃描技術於ITO 導電玻璃瑕疵檢測,除了可得到瑕疵的深度資訊,
也能同時提供各種相關的光學參數如:折射率、反射率及穿透率等。
另外應用於人體皮膚,由掃描結果可以清楚辨識皮膚的不同結構,如:
汗腺、毛囊、角質層、表皮層及真皮層。最後,我們也應用此套系統
紀錄果蠅心跳,並探討果蠅在不同的固定或麻醉方式下,其心跳行為
的變化。
In this study, we developed a Fourier domain mode locking laser (FDML) used as the light source of swept-source optical coherence tomography (SS-OCT) system. Furthermore, in this thesis, the SS-OCT system was implemented for the defect inspection of industrial products, visualization of the structures of human skin, and heart function evaluation of Drosophila. The light source is a key component in OCT system, which is related to the axial resolution and imaging speed of SS-OCT system. In this thesis, the home-made FDML laser can provide a scan rate of 240 kHz, more than 20 mW in output power, and a scanning range of 80 nm centered at 1310 nm. Compared with the commercially swept source, our FDML laser can achieve higher scan rate and phase stability. Additionally, the motion artifacts due to the unconscious movement from the sample can be greatly reduced with a FDML laser. Additionally, an SS-OCT system was implemented to scan the ITO conducting glass. With OCT scanning, the defects can be clearly identified at various depths. Several parameters in addition to morphological information can be estimated simultaneously, including the thickness of the glass substrate, the refractive index, reflection coefficient, and transmission coefficient, all of which can be used to evaluate the quality of ITO conducting glass. Furthermore, the different layer structures of human skin can be clearly identified with OCT scanning results, such as the sweat glands, hair follicles, epidermis, and dermis. Finally, SS-OCT system was used to record and analyze the heart beats of Drosophila under the different methods for immobilizing flies during OCT scanning.
目錄
目錄 -iii-
圖目錄 -vi-
表目錄 -x-
第一章 簡介 - 1 -
1-1 醫學影像技術 - 1 -
1-1-1 MRI (Magnetic Resonance Imaging) 磁振造影 - 1 -
1-1-2 Ultrasound超音波成像 - 2 -
1-1-3 Confocal Microscope 共焦顯微鏡 - 3 -
1-2 光學同調斷層掃描術 - 4 -
1-3 基礎光學概念 - 6 -
1-3-1 雷射的構成 - 6 -
1-3-2 光學窗 - 8 -
第二章 光學同調斷層掃描技術原理 - 9 -
2-1 OCT簡介 - 9 -
2-2 干涉儀 - 12 -
2-3 成像速度的演進 - 17 -
2-3-1 Spectral domain OCT (SD-OCT) - 19 -
2-3-2 Swept source OCT (SS-OCT) - 21 -
2-4 其他功能性的OCT技術 - 23 -
2-5-1 Polarization-sensitive OCT (PS-OCT) - 24 -
2-5-2 Doppler OCT (ODT) - 26 -
2-5-3 Optical Coherence Microscope (OCM) - 28 -
第三章 雷射原理 - 29 -
3-1 掃頻式雷射 - 29 -
3-2 傅域鎖模雷射 - 34 -
3-2-1 原理 - 34 -
3-2-2 實驗架構 - 36 -
3-2-3 實驗結果 - 37 -
3-3 掃頻式雷射比較 - 38 -
3-4 波長校正 - 41 -
第四章 SS-OCT系統應用於ITO玻璃檢測 - 42 -
4-1 實驗介紹 - 42 -
4-2 實驗架設與OCT結構掃描 - 43 -
4-3 實驗原理 - 45 -
4-4 結語 - 51 -
第五章 實驗結果影像 - 52 -
5-1 FDML雷射實驗結果 - 53 -
5-2 ITO導電玻璃實驗 - 55 -
5-3 人體皮膚組織掃描實驗 - 57 -
5-4 果蠅心跳行為檢測 - 59 -
第六章 結論與未來展望 - 62 -
6-1 總結 - 62 -
6-2 未來展望 - 64 -
參考文獻 - 65 -
圖目錄
圖1-1 MRI系統 - 1 -
圖1-2 MRI人體頭顱影像 - 1 -
圖1-3 超音波影像系統 - 2 -
圖1-4 Doppler 超音波影像 - 2 -
圖1-5 螢光染劑受激發後輻射出螢光 - 3 -
圖1-6 共焦顯微鏡的架構示意圖 - 3 -
圖1-8 共焦顯微鏡、OCT以及超音波間解析度比較 - 5 -
圖1-9 雷射的基礎架構 - 7 -
圖1-10 共振腔中的雷射模態 - 7 -
圖1-11 用於組織成像的光學窗 - 8 -
圖2-1 OCT成像機制的基本概念 - 11 -
圖2-2 以光纖元件為基礎的早期OCT系統架構 - 11 -
圖2-3 簡單的Michelson 干涉儀 - 13 -
圖2-4 軸向解析度 vs. 光源中心波長 - 15 -
圖2-5 不同NA值對於景深b影響 - 16 -
圖2-6 Spectral domain OCT 系統架構圖與干涉頻譜 - 19 -
圖2-7 視網膜SD-OCT影像 - 20 -
圖2-8 Swept source OCT 系統架構圖與干涉頻譜 - 22 -
圖2-9 以Swept-source作為光源的fiber-based PS-OCT - 25 -
圖2-10 血管流速方向與入射光的夾角 - 27 -
圖2-11 大鼠大腦皮質下的血管分布 - 27 -
圖2-12 比較一般共焦顯微鏡與OCM的軸向解析度 - 28 -
圖3-1 半導體光放大器能隙示意圖 - 30 -
圖3-2 多面旋轉掃描鏡 - 32 -
圖3-3 Fabry-Perot 濾波器 - 33 -
圖3-4 左側為non-buffered FDML,右側為buffered FDML - 35 -
圖3.5 Buffered FDML 系統架構圖 - 36 -
圖3-6 光功率暫態強度分布 - 37 -
圖3-7 240kHz單向掃描的 Buffered FDML光干涉暫態輸出 - 38 -
圖3-8 一般掃頻式雷射 - 39 -
圖3-9 傅域鎖模雷射 - 39 -
圖3-10 理想的波長線性調變曲線 - 41 -
圖4-1 SS-OCT系統應用於ITO導電玻璃檢測 - 44 -
圖4-2 ITO導電玻璃之影像 - 44 -
圖4-3 二維OCT影像與其對應之PSF分布 - 47 -
圖4-4 分層演算法(Segmentation algorithm) 資料處理流程圖 - 48 -
圖4-5 ITO導電玻璃對應的折射率與厚度資訊分布 - 49 -
圖4-6 ITO導電玻璃對應的反射係數與穿透係數分布 - 49 -
圖5-1 半導體光放大器的自發光頻譜 - 54 -
圖5-2 掃描濾波器對波長連續掃描 - 54 -
圖5-3 波長重新進入半導體光放大器產生雷射 - 54 -
圖5-4 ITO導電玻璃的三維OCT影像 - 55 -
圖5-5 ITO導電玻璃橫斷面影像 - 56 -
圖5-6 ITO導電玻璃電極面En face影像 - 56 -
圖5-7 人體皮膚結構影像 - 57 -
圖5-8 手指指腹的OCT影像 - 58 -
圖5-9 手臂皮膚掃描影像 - 58 -
圖5-10 野生果蠅OCT縱向掃描影像 - 60 -
圖5-11 野生果蠅OCT橫向掃描影像 - 60 -
圖5-12 野生型與基因突變型的果蠅心跳檢測 - 61 -
圖5-13 三種固定方式對果蠅心跳影響的M-mode scan - 61 - 
表目錄
表1-1 各種成像比較表 - 4 -
表2-1 Time-domain 與 Fourier domain OCT比較 - 18 -
表3-1 傳統掃頻雷射與傅域鎖模雷射之比較 - 40 -


[1] Wolfgang Drexler and James G. Fujimoto, “Optical Coherence Tomography Technology and Applications” Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
[2] The Warren Research Group at Duke University, "http://www.chem.duke.edu/~wwarren/tissueimaging.php/"
[3] S. Jacques, C. Newman, D. Levy, and A. von Eschenbach. Univ. of Texas M. D. Anderson Cancer Center, 1987.
[4] D. Huang, E.A. Swanson, C.P . Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178 (1991).
[5] Robert C. Youngquist, Sally Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-160 (1987)
[6] Kazumasa Takada, Itaru Yokohama, Kazumori Chida, and Juichi Noda, "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Appl. Opt. 26, 1603-1606
[7] A. F. Fercher, K. Mengedoht, and W. Werner, "Eye-length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-188 (1988)

[8] X. Clivaz, F. Marquis-Weible, R. P. Salathé, R. P. Novàk, and H. H. Gilgen, "High-resolution reflectometry in biological tissues," Opt. Lett. 17, 4-6 (1992)
[9] J. M. Schmitt, A. Knüttel, and R. F. Bonner, "Measurement of optical properties of biological tissues by low-coherence reflectometry," Appl. Opt. 32, 6032-6042 (1993)

[10] Tony Ko, Desmond Adler, James Fujimoto, Dmitry Mamedov, Viatcheslav Prokhorov, Vladimir Shidlovski, and Sergei Yakubovich, "Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source," Opt. Express 12, 2112-2119 (2004)
[11] E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992)
[12] R. Leitgeb, C. Hitzenberger, and Adolf Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003)
[13] Tomasz Bajraszewski, Maciej Wojtkowski, Maciej Szkulmowski, Anna Szkulmowska, Robert Huber, and Andrzej Kowalczyk, "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16, 4163-4176 (2008)
[14] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997)
[15] B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997)
[16] Michael R. Hee, David Huang, Eric A. Swanson, and James G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992)
[17] Muhammad K. Al-Qaisi and Taner Akkin, "Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber," Opt. Express 18, 3392-3403 (2010)
[18] Zhongping Chen, Thomas E. Milner, Shyam Srinivas, Xiaojun Wang, Arash Malekafzali, Martin J. C. van Gemert, and J. Stuart Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997)
[19] Joseph A. Izatt, Manish D. Kulkarni, Siavash Yazdanfar, Jennifer K. Barton, and Ashley J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997)
[20] Yonghua Zhao, Zhongping Chen, Christopher Saxer, Shaohua Xiang, Johannes F. de Boer, and J. Stuart Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000)
[21] Hongwu Ren, Zhihua Ding, Yonghua Zhao, Jianjun Miao, J. Stuart Nelson, and Zhongping Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002)
[22] A.D. Aguirre and J.G. Fujimoto, “Optical Coherence Tomography Technology and Applications” Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
[23] S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003)
[24] Hernandez, G., ”Fabry-Perot Interferometers”, Cambridge, England: Cambridge University Press, 1986.
[25] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[26] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[27] W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005)
[28] Wang-Yuhl Oh, Benjamin J. Vakoc, Milen Shishkov, Guillermo J. Tearney, and Brett E. Bouma, ">400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010)
[29] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20(21), 2258-2260 (1995).
[30] M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, "Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry," Opt. Lett. 23(12), 966-968 (1998).
[31] A. Hirai, and H. Matsumoto, "Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample," Opt. Lett. 28(21), 2112-2114 (2003).

[32] Y. S. Ghim, and S. W. Kim, "Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry," Opt. Express 14(24), 11885-11891 (2006).
[33] S. Kim, J. Na, M. J. Kim, and B. H. Lee, "Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics," Opt. Express 16(8), 5516-5526 (2008).
[34] Refractive index database," http://Refractiveindex.info"
[35] Terese winslow," http://teresewinslow.com/"
[36] E. Bier and R. Bodmer, Gene 342, 1–11 (2004).
[37] N. Lalevee, B. Monier, S. Senatore, L. Perrin, and M. Semeriva, Curr. Biol. 16, 1502–1508 (2006).
[38] B. Ganetzky, Kidney Int. 57, 766–771 (2000).
[39] E. Johnson, J. Ringo, N. Bray, and H. Dowse, J. Neurogenet. 12, 1–24 (1998).
[40] Kitmonto, "http://www.kitmondo.com/ "
[41] Knowledgerush, "http://www.knowledgerush.com/kr/encyclopedia/MRI/"
[42] ALOKA SSD3500, "http://www.pinyork.com.tw/"
[43] Satyakiran, "http://satyakiranhealthcare.com/ColorDoppler.aspx/"
[44] Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber, "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express 18, 14685-14704 (2010)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊