跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育煌
研究生(外文):Yu Huang Lin
論文名稱:具功因校正及諧波改善之市電併聯型風力發電系統研製
論文名稱(外文):Development of a Grid-connected Wind Energy Conversion System with Power Factor Correction and Harmonic Improvement
指導教授:陳偉倫陳偉倫引用關係
指導教授(外文):W. L. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:208
中文關鍵詞:電流諧波功率因數電力品質比例-諧振控制器單相變流器切換式整流器風力發電系統
外文關鍵詞:current harmonicpower factorpower qualityproportional-resonant (PR) current controllersingle-phase inverterswitching rectifierwind energy conversion system (WECS)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要目的為研製一套以DSP微控制器為控制核心之市電併聯型風力發電系統,並具有改善發電機及市電系統功率因數及電流諧波的功用。風能經由全數位控制的實驗架構轉換至市電系統,其中包括1.5kW 永磁式同步風力發電機、三相切換式整流器、推挽式升壓轉換器及單相變流器。三相切換式整流器採用最大功率追蹤演算法調節風力發電機轉速,使風力有效作用在葉片上而不會引起擾流,進而有效的擷取風能。推挽式升壓轉換器則用以提升切換式整流器輸出電壓,使單相變流器之輸出電壓能夠匹配市電電壓等級。而單相變流器主要用以維持固定的直流匯流排電壓,並將風力發電機所產生的電功率饋入市電。為了改善風力發電機與市電系統的電力品質,本論文在切換式整流器和單相變流器的控制迴路中額外整合了無效電力補償以及主動式濾波器的功能。此外,為了達到快速且精確的電流響應,本論文採用比例-諧振控制器,其具有降低控制器設計的複雜度並可減少DSP 微控制器的運算負擔。由實驗結果可證明所提的風力發電系統不僅具有良好的效能,並且可改善系統的電力品質,具有單位功因傳輸、較低的電壓總諧波失真率(<0.7%)及較低的電流總諧波失真率(<4.5%)之優點,符合IEEE Std. 519 之規範。
The purpose of the thesis is to develop a DSP-based grid-connected wind energy conversion system (WECS), capable of compensating the power factor and current harmonic for the wind-driven generator and the grid utility. The wind power is converted to the grid through a fully digital-controlled laboratory prototype which consists of a 1.5kW wind driven permanent magnet synchronous generator (PMSG), a three-phase switching rectifier, a push-pull converter, and a grid-tied single phase inverter. The three-phase switching rectifier is used to regulate the wind turbine speed such that the wind can influence the moving blade in an efficient way without causing turbulent vortex. The push-pull converter boosts the voltage generated by the switching rectifier so as to adapt the single-phase inverter to the voltage level of the grid utility. The grid-tied single phase inverter is mandatory to maintain the dc-link voltage in order to deliver the wind power to the grid utility. To refine the power quality for the PMSG and the grid utility, additional control loops including
reactive power compensator and active power filter are integrated into switching rectifier and single phase inverter. To achieve quick and accurate control in current response, a proportional-resonant (PR) current controller is adopted. The PR-controller is also advantageous to reduce the complexity in control design and the computation burden for the DSP microcontroller. The experimental results not only investigate the performance of the proposed WECS but also show that the refined power qualities such as the unity power factor, low total voltage harmonic distortion (<0.7%) and low total current harmonic distortion (<4.5%) at the grid utility fulfill the requirement stated in IEEE Std. 519.

目錄
致謝 ..................................... iv
中文摘要 ................................... v
Abstract ......................................... vi
目錄 ................................................... vii
圖目錄 ........................................ x
表目錄 ....................................... xv
主要符號表 .......................................... xvi
第一章 緒論 ................................................................................... - 1 -
1-1 研究背景................................................................................................... - 1 -
1-2 文獻回顧................................................................................................... - 5 -
1-3 研究動機與方法....................................................................................... - 9 -
1-4 論文內容介紹......................................................................................... - 11 -
第二章 風力發電系統與市電併聯規範.................................................... - 13 -
2-1 前言......................................................................................................... - 13 -
2-2 風力發電原理......................................................................................... - 13 -
2-3 永磁式同步發電機之數學模型............................................................. - 18 -
2-4 分散式發電與智慧型電網..................................................................... - 20 -
2-5 無效功率與電流諧波............................................................................. - 21 -
2-6 風力發電機與噪音問題......................................................................... - 25 -
2-7 市電併聯規範......................................................................................... - 26 -
2-8 結語......................................................................................................... - 27 -
第三章 風機側系統架構與控制 ............................................................ - 28 -
3-1 前言......................................................................................................... - 28 -
3-2 三相整流器............................................................................................. - 28 -
3-3 三相系統向量控制................................................................................. - 30 -
3-3-1 靜止參考座標軸......................................................................... - 30 -
3-3-2 同步參考座標軸......................................................................... - 32 -
3-3-3 三相系統功率控制..................................................................... - 33 -
3-4 三相切換式整流器之控制策略............................................................. - 34 -
3-4-1 電流控制器設計......................................................................... - 35 -
3-4-2 電壓調變..................................................................................... - 41 -
3-5 風力發電最大功率追蹤......................................................................... - 48 -
3-5-1 直接查表法................................................................................. - 49 -
3-5-2 模糊控制法................................................................................. - 51 -
3-6 風力發電機之無效功率控制................................................................. - 59 -
3-7 結語......................................................................................................... - 62 -
第四章 市電側系統架構與控制 ........................................................ - 63 -
4-1 前言......................................................................................................... - 63 -
4-2 推挽式升壓轉換器................................................................................. - 63 -
4-3 直流側串聯濾波電路............................................................................. - 69 -
4-4 單相電壓源型變流器與控制策略......................................................... - 72 -
4-4-1 單相系統之向量分析................................................................. - 73 -
4-4-2 電流控制器設計......................................................................... - 74 -
4-4-3 電壓調變..................................................................................... - 76 -
4-5 市電側系統有效功率與無效功率控制................................................. - 80 -
4-6 單相主動式濾波器................................................................................. - 83 -
4-7 結語......................................................................................................... - 89 -
第五章 系統硬體與程式規劃 ............................................................... - 91 -
5-1 前言......................................................................................................... - 91 -
5-2 系統硬體架構......................................................................................... - 91 -
5-2-1 系統架構..................................................................................... - 93 -
5-2-2 周邊電路..................................................................................... - 96 -
5-3 程式規劃................................................................................................. - 99 -
5-4 結語....................................................................................................... - 105 -
第六章 實驗結果與分析 ..................................................................... - 107 -
6-1 前言....................................................................................................... - 107 -
6-2 風力發電最大功率追蹤....................................................................... - 107 -
6-2-1 直接查表法之實驗結果........................................................... - 110 -
6-2-2 模糊控制法之實驗結果........................................................... - 113 -
6-2-3 最大功率演算法討論與分析................................................... - 115 -
6-3 風力發電機無效功率補償................................................................... - 122 -
6-4 風力發電機噪音抑制........................................................................... - 124 -
6-5 單相系統無效功率補償....................................................................... - 130 -
6-6 單相選擇性主動式濾波器................................................................... - 137 -
6-7 系統整合與市電併聯........................................................................... - 145 -
6-8 電力品質與併聯法規........................................................................... - 152 -
6-9 結語....................................................................................................... - 156 -
第七章 結論與未來展望 ................................................................. - 158 -
7-1 結論....................................................................................................... - 158 -
7-2 未來展望............................................................................................... - 159 -
附錄A:蒲福風級表 ................................................................................. - 160 -
附錄B:風力發電機之參數 ..................................................................... - 161 -
附錄C:電能轉換器之參數 ..................................................................... - 162 -
附錄D:電能轉換器控制策略之參數 ..................................................... - 163 -
參考文獻 ................................................................................................... - 165 -
作者簡歷及相關著作 ............................................................................... - 178 -
圖目錄
圖1.1 帄均能源消費量與生產毛額、用電量之趨勢........................................... - 1 -
圖1.2 全球溫度上升趨勢與地表溫升................................................................... - 2 -
圖1.3 國際石化燃料價格趨勢............................................................................... - 2 -
圖1.4 全球風力發電累積裝設容量....................................................................... - 3 -
圖1.5 歐洲中小型風力發電機的發展................................................................... - 4 -
圖2.1 風力發電機類型......................................................................................... - 14 -
圖2.2 風力發電機轉換效率示意圖..................................................................... - 15 -
圖2.3 風力機轉速與風能轉換效率之關係......................................................... - 16 -
圖2.4 功率係數CP 與葉尖速度比λ 關係示意圖 .............................................. - 17 -
圖2.5 不同風速下,風力發電機轉速對輸出電功率之關係............................. - 17 -
圖2.6 三相24 極Y 接之永磁式同步發電機等效電路 .................................... - 19 -
圖2.7 傳統電網監控方式與未來電網比較......................................................... - 21 -
圖2.8 分散式發電結構示意圖............................................................................. - 21 -
圖2.9 諧波成份示意圖......................................................................................... - 22 -
圖2.10 風力發電機之噪音分布........................................................................... - 25 -
圖3.1 整流器種類示意圖..................................................................................... - 28 -
圖3.2 傳統風力發電系統架構............................................................................. - 29 -
圖3.3 二極體整流輸入電壓、電流實驗波形..................................................... - 30 -
圖3.4 二極體整流器電流諧波頻譜..................................................................... - 30 -
圖3.5 三相與靜止座標示意圖............................................................................. - 31 -
圖3.6 靜止參考座標軸與同步參考座標軸關係................................................. - 32 -
圖3.7 解耦向量控制在參考座標軸之關係......................................................... - 34 -
圖3.8 風力發電機側系統架構............................................................................. - 35 -
圖3.9 切換式整流器電流控制器......................................................................... - 35 -
圖3.10 比例-積分(PI)控制器追蹤交流電流命令實驗波形 ............................. - 36 -
圖3.11 比例-諧振(PR)控制器追蹤交流電流命令實驗波形 ............................ - 37 -
圖3.12 比例-諧振(PR)控制器轉換函數之波德圖 ............................................ - 37 -
圖3.13 比例-諧振(PR)控制器比例係數Kp 設計 ............................................... - 38 -
圖3.14 比例-諧振(PR)控制器諧振係數Kr 設計 ............................................... - 38 –
圖3.15 比例-諧振(PR)控制器截止頻率係數ωc 設計 ...................................... - 39 -
圖3.16 比例-諧振(PR)控制器之切換式整流器電流控制器 ............................ - 39 -
圖3.17 使用z 運算子與δ 運算子轉換域穩定度 .............................................. - 40 -
圖3.18 使用z 運算子與δ 運算子控制器實現結果與結構比較 ...................... - 41 -
圖3.19 離散化實現型式結構............................................................................... - 41 -
圖3.20 空間向量-磁滯電流控制調變技術控制方塊圖 .................................... - 42 -
圖3.21 正弦式脈波寬度調變技術控制方塊圖................................................... - 42 -
圖3.22 切換式整流器開關模型架構................................................................... - 42 -
圖3.23 切換式整流器基本空間向量開關切換模式........................................... - 43 -
圖3.24 空間向量脈波寬度調變各區間所調變之PWM 訊號切換狀態 .......... - 44 -
圖3.25 空間向量脈波寬度調變向量合成與開關訊號....................................... - 45 -
圖3.26 磁滯電流控制調變技術之電壓、電流實驗波形................................... - 47 -
圖3.27 空間向量-磁滯電流控制調變技術之電壓、電流實驗波形 ................. - 47 -
圖3.28 空間向量脈波寬度調變技術之電壓、電流實驗波形........................... - 48 -
圖3.29 切換式整流器使用各調變技術之電力品質關係................................... - 48 -
圖3.30 二極體整流器與切換式整流器電流諧波比較....................................... - 48 -
圖3.31 以直接查表法實現之最大功率追蹤控制器........................................... - 49 -
圖3.32 直接查表法追蹤過程............................................................................... - 50 -
圖3.33 直接查表法啟動實驗波形....................................................................... - 51 -
圖3.34 改善後直接查表法啟動實驗波形........................................................... - 51 -
圖3.35 模糊控制法原理與追蹤流程................................................................... - 52 -
圖3.36 以模糊控制法實現之最大功率追蹤控制器........................................... - 53 -
圖3.37 模糊控制法歸屬函數特性....................................................................... - 55 -
圖3.38 模糊控制法最大-最小合成方法 ............................................................ - 55 -
圖3.39 使用Matlab 模糊設計工具之規則庫設定 ............................................ - 56 -
圖3.40 以Matlab 模糊工具進行模糊控制的設計 ............................................ - 56 -
圖3.41 模糊控制法輸入與輸出之歸屬函數....................................................... - 57 -
圖3.42 模糊控制法增益規劃與增益帄面........................................................... - 58 -
圖3.43 切換式整流器無效功率補償工作模式................................................... - 60 -
圖3.44 切換式整流器有效功率方向控制示意圖............................................... - 61 -
圖3.45 風機側切換式整流器控制方塊圖........................................................... - 62 -
圖4.1 推挽式升壓轉換器架構............................................................................. - 64 -
圖4.2 當Q1 導通,Q2 截止導通路徑:模式一(M1) ......................................... - 65 -
圖4.3 當Q1 截止,Q2 截止導通路徑:模式二(M2) ......................................... - 66 -
圖4.4 當Q1 截止,Q2 導通導通路徑:模式三(M3) ......................................... - 66 -
圖4.5 推挽式升壓轉換器之相關波形................................................................. - 68 -
圖4.6 市電併聯側系統架構................................................................................. - 69 -
圖4.7 單相變流器直流側電流及功率的交流成份............................................. - 70 -
圖4.8 使用低通濾波器之單相變流器架構......................................................... - 70 -
圖4.9 使用串聯濾波器之單相變流器架構......................................................... - 71 -
圖4.10 無串聯濾波器單相變流器輸入與輸出電流波形................................... - 72 -
圖4.11 使用串聯濾波器的單相變流器實驗波形 ............................................. - 72 -
圖4.12 單相半橋式電壓源型變流器架構........................................................... - 73 -
圖4.13 單相全橋式電壓源型變流器架構........................................................... - 73 -
圖4.14 單相系統解耦向量控制在參考座標軸之關係....................................... - 74 -
圖4.15 單相變流器的電流控制器....................................................................... - 75 -
圖4.16 比例-諧振(PR)控制器之單相變流器電流控制器 ................................ - 76 -
圖4.17 單相全橋式變流器之雙極性調變技術................................................... - 76 -
圖4.18 單相全橋式變流器之單極性調變技術................................................... - 77 -
圖4.19 單相全橋式變流器之開關模型............................................................... - 77 -
圖4.20 改良型正弦式脈波寬度調變技術開關時序與相關波形....................... - 79 -
圖4.21 改良型正弦式脈波寬度調變技術電壓波形........................................... - 80 -
圖4.22 改良型正弦式脈波寬度調變技術輸出脈波電壓與負載電壓............... - 80 -
圖4.23 市電側直流穩壓控制器........................................................................... - 81 -
圖4.24 耦合點之無效功率補償控制示意圖....................................................... - 81 -
圖4.25 市電側無效功率補償控制器................................................................... - 82 -
圖4.26 單相變流器由電感性補償轉換成電阻性補償之實驗波形................... - 82 -
圖4.27 單相變流器由電容性補償轉換成電阻性補償之實驗波形................... - 83 -
圖4.28 耦合點之諧波電流補償控制示意圖....................................................... - 84 -
圖4.29 傳統的選擇性諧波偵測器....................................................................... - 84 -
圖4.30 二階通用型積分器................................................................................... - 85 -
圖4.31 二階通用型積分器頻域分析................................................................... - 85 -
圖4.32 二階通用型積分器參數設計................................................................... - 86 -
圖4.33 二階通用型積分器之選擇性諧波偵測器............................................... - 86 -
圖4.34 比例-諧振(PR)控制器之選擇性主動式濾波器 .................................... - 87 -
圖4.35 比例-諧振(PR)控制器之選擇性主動式濾波器頻域分析 .................... - 87 -
圖4.36 傳統的選擇性主動式濾波器................................................................... - 88 -
圖4.37 傳統選擇性主動式濾波器....................................................................... - 89 -
圖4.38 選擇性主動式濾波器............................................................................... - 89 -
圖4.39 市電側單相變流器控制方塊圖............................................................... - 90 -
圖5.1 單相市電併聯型風力發電系統實驗帄台................................................. - 91 -
圖5.2 單相市電併聯型風力發電系統架構......................................................... - 92 -
圖5.3 長庚大學之實驗風場................................................................................. - 93 -
圖5.4 霍爾電壓感測器電路................................................................................. - 96 -
圖5.5 光耦合驅動電路......................................................................................... - 97 -
圖5.6 風速轉換電路的流程圖............................................................................. - 97 -
圖5.7 頻率-電壓(F/V)轉換電路 .......................................................................... - 98 -
圖5.8 風速轉換電路之實驗波形......................................................................... - 98 -
圖5.9 單相市電併聯型風力發電系統控制方塊圖............................................. - 99 -
圖5.10 系統主程式規劃流程圖......................................................................... - 101 -
圖5.11 市電側變流器啟動與故障保護子程式規劃流程圖 ........................... - 102 -
圖5.12 風機側控制系統程式規劃流程圖......................................................... - 104 -
圖5.13 市電側控制系統與系統停止子程式規劃流程圖................................. - 106 -
圖6.1 風力發電機最大功率追蹤實驗架構...................................................... - 107 -
圖6.2 未執行最大功率追蹤時系統之動態響應過程....................................... - 108 -
圖6.3 未執行最大功率追蹤之累積能量........................................................... - 109 -
圖6.4 未執行最大功率追蹤之能量換轉換效率............................................... - 109 -
圖6.5 未執行最大功率追蹤之功率-轉速曲線 ................................................ - 110 -
圖6.6 最佳轉速常數時直接查表法時系統之動態響應過程........................... - 111 -
圖6.7 最佳轉速常數時直接查表法之累積能量............................................... - 111 -
圖6.8 最佳轉速常數時直接查表法之能量轉換效率....................................... - 112 -
圖6.9 最佳轉速常數時直接查表法之功率-轉速曲線 .................................... - 112 -
圖6.10 模糊控制法時系統之動態響應過程..................................................... - 113 -
圖6.11 模糊控制法之累積能量 ....................................................................... - 114 -
圖6.12 模糊控制法之能量轉換效率................................................................. - 114 -
圖6.13 模糊控制法之功率-轉速曲線 .............................................................. - 115 -
圖6.14 各種最大功率演算法能量轉換效率分布............................................. - 118 -
圖6.15 各種最大功率演算法帄均化能量轉換效率分布................................. - 118 -
圖6.16 以較低的轉速常數(b=0.0234)進行直接查表法之功率-轉速曲線 .... - 120 -
圖6.17 以較高的轉速常數(b=0.0702)進行直接查表法之功率-轉速曲線 .... - 121 -
圖6.18 風力發電機無效功率補償實驗架構..................................................... - 122 -
圖6.19 切換式整流器由電容性補償轉換成電阻性補償之實驗波形............. - 123 -
圖6.20 切換式整流器由電阻性補償轉換成電感性補償之實驗波形............. - 123 -
圖6.21 切換式整流器由電感性補償轉換成電容性補償之實驗波形............. - 123 -
圖6.22 傳統二極體整流器輸出電流與傅立葉分析......................................... - 124 -
圖6.23 切換式整流器輸出電流與傅立葉分析................................................. - 125 -
圖6.24 在低轉速下傳統二極體整流器噪音振幅與傅立葉分析..................... - 127 -
圖6.25 在低轉速下切換式整流器噪音振幅與傅立葉分析............................. - 127 -
圖6.26 在中轉速下傳統二極體整流器噪音振幅與傅立葉分析..................... - 128 -
圖6.27 在中轉速下切換式整流器噪音振幅與傅立葉分析............................. - 128 -
圖6.28 在高轉速下傳統二極體整流器噪音振幅與傅立葉分析..................... - 129 -
圖6.29 在高轉速下切換式整流器噪音振幅與傅立葉分析............................. - 129 -
圖6.30 單相系統無效功率補償示意圖............................................................. - 130 -
圖6.31 電阻性負載實驗:PCC 之電壓、電流波形 ........................................ - 131 -
圖6.32 電阻性負載實驗:PCC 經無效功率補償之電壓、電流波形 ............ - 131 -
圖6.33 電阻性負載實驗:PCC 經無效功率補償之電力品質分析 ................ - 131 -
圖6.34 電容性負載實驗:PCC 之電壓、電流波形 ........................................ - 132 -
圖6.35 電容性負載實驗:PCC 經無效功率補償之電壓、電流波形 ............ - 132 -
圖6.36 電容性負載實驗:PCC 經無效功率補償之電力品質分析 ................ - 133 -
圖6.37 電感性負載實驗:PCC 之電壓、電流波形 ........................................ - 133 -
圖6.38 電感性負載實驗:PCC 經無效功率補償之電壓、電流波形 ............ - 134 -
圖6.39 電感性負載實驗:PCC 經無效功率補償之電力品質分析 ................ - 134 -
圖6.40 電阻性負載投入與移除實驗:PCC 電壓、電流之動態響應 ............ - 135 -
圖6.41 電容性負載投入與移除實驗:PCC 電壓、電流之動態響應 ............ - 135 -
圖6.42 電感性負載投入與移除實驗:PCC 電壓、電流之動態響應 ............ - 136 -
圖6.43 單相系統電流諧波補償示意圖............................................................. - 137 -
圖6.44 非線性負載投入實驗:PCC 之電壓、電流波形 ................................ - 138 -
圖6.45 非線性負載投入實驗:PCC 之電力品質分析 .................................... - 138 -
圖6.46 二階通用型積分器諧波偵測器之實驗波形......................................... - 139 -
圖6.47 選擇性主動式濾波器對三次電流諧波進行補償實驗波形................. - 139 -
圖6.48 選擇性主動式濾波器對三次電流諧波進行補償之電力品質............. - 139 -
圖6.49 非線性負載投入實驗:PCC 經控制策略補償之電壓、電流波形 .... - 140 -
圖6.50 非線性負載投入實驗:PCC 經控制策略補償之電力品質 ................ - 141 -
圖6.51 選擇性主動式濾波器補償前後的電流諧波分布................................. - 141 -
圖6.52 選擇性主動式濾波器補償前後的功率因數......................................... - 141 -
圖6.53 選擇性主動式濾波器在負載改變之諧波偵測器響應......................... - 142 -
圖6.54 選擇性主動式濾波器在負載改變之動態響應..................................... - 142 -
圖6.55 選擇性主動式濾波器在負載由250Ω 增加至500Ω 之暫態響應 ..... - 143 -
圖6.56 選擇性主動式濾波器在負載由500Ω 降低至250Ω 之暫態響應 ..... - 143 -
圖6.57 負載為250Ω 時,補償前後電流諧波比較 .......................................... - 145 -
圖6.58 負載為500Ω 時,補償前後電流諧波比較 .......................................... - 145 -
圖6.59 單相市電併聯型風力發電系統架構..................................................... - 146 -
圖6.60 風機側切換式整流器控制器驗證實驗................................................. - 146 -
圖6.61 市電側單相變流器控制器驗證實驗..................................................... - 147 -
圖6.62 單相併聯型風力發電系統與市電併聯的動態響應過程..................... - 148 -
圖6.63 啟動時(2-6 秒)操作曲線的收斂軌跡................................................... - 148 -
圖6.64 單相併聯型風力發電系統與市電併聯的實際電壓、電流波形......... - 149 -
圖6.65 啟動後(6-100 秒)操作曲線的追蹤軌跡............................................... - 149 -
圖6.66 風速與風力發電系統輸出電壓、電流的動態響應波形..................... - 150 -
圖6.67 單相市電併聯型風力發電系統使用直接查表法之動態響應過程..... - 151 -
圖6.68 單相市電併聯型風力發電系統使用直接查表法之累積能量............. - 151 -
圖6.69 單相市電併聯型風力發電系統使用直接查表法之能量轉換效率..... - 152 -
圖6.70 單相市電併聯型風力發電系統使用直接查表法之功率-轉速曲線 .. - 152 -
圖6.71 風機側切換式整流器之穩態電壓、電流之實驗波形......................... - 153 -
圖6.72 風機側切換式整流器之電力品質分析................................................. - 153 -
圖6.73 市電側單相變流器之穩態電壓、電流之實驗波形............................. - 154 -
圖6.74 市電側單相變流器之電力品質分析..................................................... - 154 -
圖6.75 轉換器未啟動前轉換系統兩端之電壓、電流波形............................. - 155 -
圖6.76 轉換器啟動後轉換系統兩端之電壓、電流波形................................. - 155 -
圖6.77 風力發電系統運轉時之功率因數......................................................... - 155 -
表目錄
表1.1 各類初級能源可開採年限統計(2009) ........................................................ - 2 -
表2.1 六類諧波負載帄均電流諧波失真率......................................................... - 23 -
表2.2 常見負載諧波帄均電流諧波失真率......................................................... - 23 -
表2.3 電力諧波對各種電器設備的影響............................................................. - 24 -
表2.4 電力系統諧波管制暫行標準..................................................................... - 27 -
表2.5 用戶責任點之電壓諧波失真率................................................................. - 27 -
表3.1 電壓空間向量與變流器開關狀態的對照表............................................. - 44 -
表4.1 單相全橋式變流器開關狀態..................................................................... - 77 -
表5.1 德州儀器公司TMS320F28335 之晶片硬體規格 ................................... - 95 -
表6.1 各種不同的最大功率追蹤演算法之實驗數據....................................... - 116 -
表6.2 各種不同的最大功率追蹤演算法之實驗結果分析............................... - 119 -
表6.3 最大功率追蹤演算法分析結果............................................................... - 121 -
表6.4 風力發電機噪音抑制實驗結果............................................................... - 126 -
表6.5 市電側無效功率控制器實驗結果........................................................... - 136 -
表6.6 選擇性主動式濾波器實驗結果............................................................... - 144 -
表6.7 電力品質與併聯法規分析結果............................................................... - 156 -
表A.1 蒲福風級表 ............................................................................................ - 160 -
表B.1 本論文所採用風力發電機之參數 ........................................................ - 161 -
表C.1 本論文電能轉換器之參數 ..................................................................... - 162 -
表D.1 本論文電能轉換器控制策略之參數 ................................................. - 163 -

[1]經濟部能源局,“中華民國98年能源統計手冊”,2010。
[2]National Aeronautics and Space Administration (NASA), “Global climate change,” 2010.
[3]United Nations, “Kyoto protocol to the united nations framework convention on climate change,” 1998.
[4]Beyond Petroleum, “BP statistical review of world energy,” 2010.
[5]經濟部能源局,“99年~108年長期負載預測與電源開發規劃摘要報告”,2010。
[6]Global Wind Energy Council (GWEC), “Global wind report,” 2011.
[7]European Wind Energy Association (EWEA), “Wind force 12,” 2004.
[8]經濟部能源局,“再生能源發展條例草案”,2010。
[9]經濟部能源局,“2010年能源產業技術白皮書”,2010。
[10]British Wind Energy Association (BWEA), “Small wind systems UK market report,” 2011.
[11]M. Karrari, W. Rosehart, and O. P. Malik, “Comprehensive control strategy for a variable speed cage machine wind generation unit,” IEEE Trans. on Energy Conversion, vol. 20, no. 2, pp. 415-423, 2005.
[12]M. G. Simoes, B. K. Bose, and R. J. Spiegel, “Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system,” IEEE Trans. on Industry Applications, vol. 33, no. 4, pp. 956-965, 1997.
[13]M. Naidu and J. Walters, “A 4-kW 42-V induction-machine-based automotive power generation system with a diode bridge rectifier and a PWM inverter,” IEEE Trans. on Industry Applications, vol. 39, no. 5, pp. 1287-1293, 2003.
[14]W. L. Chen, W. G. Liang, and H. S. Gau, “Design of a mode decoupling STATCOM for voltage control of wind-driven induction generator systems,” IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1758-1767, 2010.
[15]W. L. Chen and Y. Y. Hsu, “Unified voltage and pitch angle controller for a wind-driven induction generator system,” IEEE Trans. on Aerospace and Electronic Systems, vol. 44, no. 3, pp. 913-926, 2008.
[16]W. L. Chen and Y. Y. Hsu, “Controller design for an induction generator driven by a variable-speed wind turbine,” IEEE Trans. on Energy Conversion, vol. 21, no. 3, pp. 625-635, 2006.
[17]R. Pena, J. C. Clare, and G. M. Asher, “A doubly-fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine,” IEE Proc.-Electric Power Applications, vol. 143, no. 5, pp. 380-387, 1996.
[18]R. Pena, J. C. Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation,” IEE Proc. - Electric Power Applications, vol. 143, no. 3, pp. 231-241, 1996.
[19]李龍安,「雙饋式感應風力發電機與配電系統之併聯運轉」,台灣大學電機所碩士論文,2010。
[20]J. Matas, M. Castilla, J. M. Guerrero, L. Garcia de Vicuna, and J. Miret, “Feedback linearization of direct-drive synchronous wind-turbines via a sliding mode approach,” IEEE Trans. on Power Electronics, vol. 23, no. 3, pp. 1093-1103, 2008.
[21]F. D. Kanellos and N. D. Hatziargyriou, “Control of variable speed wind turbines equipped with synchronous or doubly fed induction generators supplying islanded power systems,” IET Renewable Power Generation, vol. 3, no. 1, pp. 1752-1416, 2009.
[22]M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of permanent -magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. on Energy Conversion, vol. 21, no. 1, pp. 130-135, 2006.
[23]K. Tan and S. Islam, “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE Trans. on Energy Conversion, vol. 19, no. 2, pp. 392-399, 2004.
[24]陳明宏,「交流-直流-交流功率控制器於三相雙繞組永磁式同步風力發電機系統之應用」,台灣科技大學電機所博士論文,2007。
[25]何坤哲,「以數位信號處理器為基礎之小型風力發電系統研製」,台灣科技大學電機所碩士論文,2007。
[26]E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 486-494, 2006.
[27]S. H. Song, S. I. Kang, and N. K. Hahm, “Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion system,” in Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 154-158, 2003.
[28]M. G. Molina and P. E. Mercado, “A new control strategy of variable speed wind turbine generator for three-phase grid-connected applications,” in Proc. IEEE Transmission and Distribution Conference and Exposition, pp. 1-8, 2008.
[29]I. K. Buehring and L. L. Freris, “Control policies for wind-energy conversion systems,” IEE Proc. C in Proc. Generation Transmission and Distribution, vol. 128, no. 5, pp. 253-261, 1981.
[30]A. Ahmed, Li Ran, and J. R. Bumby, “New constant electrical power soft-stalling control for small-scale VAWTs,” IEEE Trans. on Energy Conversion, vol. 25, no. 4, pp. 1152-1161, 2010.
[31]E. H. Ismail and R. Erickson, “Single-switch 3φ PWM low harmonic rectifiers,” IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 338-346, 1996.
[32]J. Kikuchi, M. D. Manjrekar, and T. A. Lipo, “Performance improvement of half controlled three phase PWM boost rectifier,” 30th Annual IEEE Power Electronics Specialists Conference, vol. 1, pp. 319-324, 1999.
[33]H. Geng, D. Xu, B. Wu, and G. Yang, “Active damping for PMSG-based WECS with DC-link current estimation,” IEEE Trans. on Energy Conversion, vol. 58, no. 4, pp. 1110-1119, 2011.
[34]M. Singh and A. Chandra, “Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities,” IEEE Trans. on Power Electronics, vol. 26, no. 1, pp. 165-175, 2011.
[35]M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. on Industry Applications, vol. 46, no. 1, pp. 331-339, 2010.
[36]F. Valenciaga and P. F. Puleston, “High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator,” IEEE Trans. on Energy Conversion, vol. 23, no. 3, pp. 860-867, 2008.
[37]V. Agarwal, R. K. Aggarwal, P. Patidar, and C. Patki, “A novel scheme for rapid tracking of maximum power point in wind energy generation systems,” IEEE Trans. on Energy Conversion, vol. 25, no. 1, pp. 228-236, 2010.
[38]J. S. Thongam, P. Bouchard, H. Ezzaidi, and M. Ouhrouche, “Wind speed sensorless maximum power point tracking control of variable speed wind energy conversion systems,” IEEE Electric Machines and Drives Conference, pp. 1832-1837, 2009.
[39]C. Liu, K. T. Chau, and X. Zhang, “An efficient wind–photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. on Industrial Electronics, vol. 57, no. 3, pp. 831-839, 2010.
[40]E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 486-494, 2006.
[41]C. T. Pan and Y. L. Juan, “A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system,” IEEE Trans. on Energy Conversion, vol. 25, no. 1, pp. 207-216, 2010.
[42]A. M. D. Broe, S. Drouilhet, and V. Gevorgian, “A peak power tracker for small wind turbines in battery charging applications,” IEEE Trans. on Energy Conversion, vol. 14, no. 4, pp. 1630-1635, 1999.
[43]Q. Wang and L. Chang, “An independent maximum power extraction strategy for wind energy conversion systems,” Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1142-1147, 1999.
[44]R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system”, IEEE Trans. on Energy Conversion, vol. 18, pp. 163-168, 2003.
[45]L. L. Freris, Wind Energy Conversion System, Englewood Cliffs, NJ: Prentice-Hall, 1990.
[46]A. B. Raju, B. G. Fernandes, and K. Chatterjee, “A UPF power conditioner with maximum power point tracker for grid connected variable speed wind energy conversion system,” 1st International Conference on Power Electronics Systems and Applications, pp. 107-112, 2004.
[47]A. Mirecki, X. Roboam, and F. Richardiau, “Architecture Complexity and Energy Efficiency of Small Wind Turbines,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 660-670, 2007.
[48]A. W. Green and J. T. Boys, “Hysteresis current-forced three-phase voltage-sourced reversible rectifier,” IEEE Trans. on Industrial Electronics, vol. 136, no. 3, pp. 113-120, 1989.
[49]E. S. Kim, Y. B. Byun, M. H. Kye, K. Y. Joe, H. H. Koo, Y. H. Kim, and B. D. Yoon, “A leading current compensation control in three phase PWM AC/DC converter,” 18th International Telecommunications Energy Conference, pp. 556-561, 1996.
[50]J. W. Dixon and B. T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier,” IEEE Trans. on Industrial Electronics, vol. 1, pp. 319-324, 1999.
[51]R. Wu, S. B. Dewan, and G. R. Slemon, “Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control,” IEEE Trans. on Industry Applications, vol. 27, no. 2, pp. 355-364, 1991.
[52]M. T. Rowan and J. R. Kerkman, “A new synchronous current regulator and an analysis of current-regulated PWM inverters,” IEEE Trans. on Industry Applications, vol. 22, no. 4, pp. 678-690, 1986.
[53]陳偉倫,「風力-感應發電機系統之電壓及頻率調整器設計」,台灣大學電機所博士論文,2006。
[54]江炫樟,「電力電子學」,全華科技圖書,2007。
[55]C. M. Liaw, T. H. Chen, T. C. Wang, G. J. Cho, C. M. Lee, and C. T. Wang, “Design and implementation of a single phase current-forced switching mode bilateral convertor,” IEE Proc. B Electric Power Applications, vol. 138, no. 3, pp. 129-136, 1991.
[56]P. A. Dahono, “New hysteresis current controllers for single-phase full-bridge inverters,” IET Power Electronics, vol. 2, pp. 5, 2009.
[57]T. C. Binh, M. T. Dat, N. M. Dung, P. Q. An, P. D. Truc and N. H. Phuc, “Active and reactive power controller for single-phase grid-connected photovoltaic systems,” Proceedings of AUN-SEEDNet Conference on Renewable Energy- Bandung- Indonesia, 2009.
[58]R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina, and F. Profumo, “Single-phase PV system with active and reactive power control and optimization of the ferrite core volume,” IEEE Trans. on Power Electronics, vol. 20, no. 6, pp. 1-6, 2005.
[59]L. Wang and C.H. Lee, ”A novel analysis on the performance of an isolated self-excited induction generator,” IEEE Trans. on Energy Conversion, vol. 12, no. 2, pp. 109-117, 1997.
[60]T. F. Chan, ”Capacitance requirements of self-excited induction generators,” IEEE Trans. on Energy Conversion, vol. 8, no. 2, pp. 304-311, 1993.
[61]卞均浩,「結合無電流感測及諧波消除式脈波寬度調變技術之靜態同步補償器設計」,長庚大學電機所碩士論文,2009。
[62]A. Gonzalez and J. C. Mccall, “Design of filters to reduce harmonic distortion power system,” IEEE Trans. on Industry Applications, vol. 23, no. 3, pp. 504-511, 1987.
[63]R. L. Almonte and A. W. Ashley, “Harmonic at the utility industrial interface: a real world example”, IEEE Trans. on Industry Applications, vol. 31, no. 6, pp. 1419-1426, 1995.
[64]H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components”, IEEE Trans. on Industry Applications, vol. 20, no. 3, pp. 625-630, 1984.
[65]L. Asiminoaei, S. Kalaschnikow, and S. Hansen, “Overall and selective compensation of harmonic currents in active filter applications”, Compatibility and Power Electronics, pp. 153-160, 2009.
[66]T. Kataoka, T. Ishizuka, K. Nezu, Y. Sato, and H. Yamaguchi, “Current control of voltage-type PWM rectifier introducing resonance-based controller,” Sixth International Conference on Power Electronics and Variable Speed Drives, pp. 519-524, 1996.
[67]Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current,” IEEE Trans. on Industry Applications, vol. 34, no. 3, pp. 480-486, 1998.
[68]P. Mattavelli, “Implementation of synchronous frame harmonic control for high-performance AC power supplies,” IEEE Industry Applications Conference, vol. 3, pp. 1988-1995, 2000.
[69]S. Fukuda and T. Yoda, “A novel current-tracking method for active filters based on a sinusoidal internal model,” IEEE Trans. on Industry Applications, vol. 37, no. 3, pp. 888-895, 2001.
[70]A. Moki and S. Fukuda, “Sinusoidal internal model based control of a three-phase voltage source rectifier with buck-boost operation,” The Fifth International Conference on Power Electronics and Drive Systems, vol. 2, pp. 1466-1470, 2003.
[71]S. Fukuda and R. Imamura, “Application of a sinusoidal internal model to current control of three-phase utility-interface converters,” IEEE Trans. on Industrial Electronics, vol. 52, no. 2, pp. 420-426, 2005.
[72]D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequency-domain analysis of three-phase linear current regulators,” IEEE Trans. on Industry Applications, vol. 37, no. 2, pp. 601-610, 2001.
[73]D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. on Power Electronics, vol. 18, no. 3, pp. 814-822, 2003.
[74]P. C. Loh, M. J. Newman, D. N. Zmood, and D. G. Holmes, “A comparative analysis of multiloop voltage regulation strategies for single and three-phase UPS systems,” IEEE Trans. on Power Electronics, vol. 18, no. 5, pp. 1176-1185, 2003.
[75]C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “Frequency response analysis of current controllers for selective harmonic compensation in active power filters,” IEEE Trans. on Industrial Electronics, vol. 56, no. 2, pp. 337-347, 2009.
[76]X. Yuan, W. Merk, H. Stemmler, and J. Allmeling, “Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions,” IEEE Trans. on Industry Applications, vol. 38, no. 2, pp. 523-532, 2002.
[77]A. Nagliero, M. Liserre, N. A. Orlando, R. Mastromauro, and A. Dell’Aquila, “Implementation on DSP TMS320F2812 of the control of the grid converter of a small wind turbine system,” International Conference on Clean Electrical Power, pp. 415-419, 2009.
[78]H. Cha, T. K. Vu, and J. E. Kim, “Design and control of proportional-resonant controller based photovoltaic power conditioning system,” IEEE Energy Conversion Congress and Exposition, pp. 2198-2205, 2009.
[79]R. Costa-Castello, R. Grino, and E. Fossas, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electric Power Applications, vol. 153, no. 5, pp. 750-762, 2006.
[80]T. Y. Chang, K. L. Lo, and C. T. Pan, “A novel vector control hysteresis current controller for drives,” IEEE Trans. on Energy Conversion, vol. 9, no. 2, pp. 297-303, 1994.
[81]梁維綱,「應用於感應電動機向量控制之新型低切換損直接電流驅動器設計」,長庚大學電機所碩士論文,2010。
[82]H. W. Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on voltage space vectors,” IEEE Trans. on Industry Applications, vol. 24, no. 1, pp. 142-150, 1988.
[83]W. L. Chen, C. H. Pien, and Y. P. Feng, “Design of an FPGA-based space vector PWM generator for three-phase voltage-sourced inverters,” in Proc. 2nd IEEE International Conference on Power and Energy, 2008.
[84]B. Crowhurst, E. F. El-Saadany, L. El Chaar, and L. A. Lamont, “Single-phase grid-tie inverter control using DQ transform for active and reactive load power compensation,” IEEE International Conference on Power and Energy, pp. 489-494, 2010.
[85]J. Salaet, S. Alepuz, A. Gilabert, and J. Bordonau, “Comparison between two methods of DQ transformation for single phase converters control. application to a 3-level boost rectifier,” IEEE 35th Annual Power Electronics Specialists Conference, pp. 214-220, 2004.
[86]U. A. Miranda, M. Aredes, and L. G. B. Rolim, “A DQ synchronous reference frame current control for single-phase converters,” IEEE 36th Power Electronics Specialists Conference, pp. 1377-1381, 2005.
[87]A. Rufer, B. Bahrani, S. Kenzelmann, and L. Lopes, “Vector control of single-phase voltage source converters based on fictive axis emulation,” IEEE Energy Conversion Congress and Exposition, pp. 2689-2695, 2009.
[88]B. Bahrani, A. Rufer, S. Kenzelmann, and L. A. C. Lopes, “Vector control of single-phase voltage-source converters based on fictive-axis emulation,” IEEE Trans. on Industry Applications, vol. 42, no. 2, pp. 831-840, 2011.
[89]B. Bahrani, S. Kenzelmann, and A. Rufer, “Multivariable-PI-based DQ current control of voltage source converters with superior axes decoupling capability,” IEEE Trans. on Industrial Electronics , no. 99, pp. 1-10, 2010.
[90]C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “High performance current controller for selective harmonic compensation in active power filters,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1826-1835, 2007.
[91]S. Nonaka, “A utility-connected residential PV system adapted a novel single-phase composite PWM voltage source inverter”, IEEE First World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 1064-1068, 1994
[92] S. Nonaka and Y. Neba, “Single-phase composite PWM voltage source converter”, Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, pp. 761-768, 1994
[93]蘇益立,「市電併聯型風力發電系統實現」,長庚大學電機所碩士論文,2010。
[94]台灣經濟研究院,“台灣地區應用分散性電力可行性研究期中報告”,2002。
[95]G. L. Johnson, Wind Energy System, NJ:Prentice Hall International, 1985.
[96] T. Burton, D. Sharpe, and N. Jenkins, Wind Energy: Handbook, NJ:John Wiley and Sons, 2001.
[97]J. Twidell and T. Weir, Renewable energy resources, Taylor & Francis, 2006.
[98]陳清嚴,張嘉文,江榮城,“風力場址規劃與環境影響評估”,電機月刊,第154~173頁,2006。
[99]I. Boldea, The Electric Generators Handbook: Variable Speed Generators, CRC Press, 2006.
[100]台灣智慧型電網產業協會,“智慧型電網介紹”,2008。
[101] Ecole Polytechnique Fédérale de Lausanne (EPFL) Power Systems Group, “Integration of distributed generation and storage technologies in distribution systems,” 2007.
[102]立法院,“電業法”,2011。
[103]顏世雄,“電力諧波與電壓閃爍座談會講義”,中華民國電機技師公會全國聯合會,1993。
[104]宓哲民,陳明堂,朱惠勇,黃慶連,“家電產品諧波測量分析”,電機月刊,第29期,第111-121頁,1993。
[105]EPRI Power Electronics Application Center, “Harmonic current in building wiring,” PQTN Commentary no.1, 1996.
[106]林建隆,「辦公大樓配電設計之諧波分析」,台灣科技大學電機所碩士論文,2006。
[107]朱惠勇,黃慶連,陳明堂,“配電系統諧波污染來源與防治”,台灣電力公司研究報告,1992。
[108] New Zealand Wind Energy Association (NZWEA), “Sound from turbines,“ 2010.
[109]American Wind Energy Association (AWEA), “Wind turbine sound and health effects an expert panel review,” 2009.
[110]Canadian Wind Energy Association (CanWEA), “Wind turbines and sound: review and best practice guidelines,” 2000.
[111]British Wind Energy Association (BWEA), “Low frequency noise and wind turbines,” 2005.
[112]International Energy Agency Wind agreement (IEA Wind), “Task27:consumer labelling of small wind turbines,” 2010.
[113]International Electrotechnical Commission (IEC), “Wind turbine generator systems-Part 11: Acoustic noise measurement techniques,” 2002.
[114]行政院環保署,“噪音防制法”,2008。
[115]台灣電力股份有限公司,“台灣電力股份有限公司再生能源發電系統併聯技術要點”,2009。
[116]台灣電力股份有限公司,“電力系統諧波管制暫行標準”,1993。
[117]IEEE Std 519-1992, “IEEE recommended practices and requirements for harmonic control electrical power systems,” 1992.
[118]台灣電力股份有限公司,“再生能源發電系統調度操作準則”,2009。
[119]劉昌煥,「交流電機控制:向量控制與直接轉矩控制原理」,東華書局,2003。
[120]S. Buso and P. Mattavelli, Digital Control in Power Electronics, Morgan and Claypool, 2006.
[121]F. Groutage, L. Volfson, and A. Schneider, “S-plane to Z-plane mapping using a simultaneous equation algorithm based on the bilinear transformation,” IEEE Trans. on Automatic Control, vol. 32, no. 7, pp. 635, 1987.
[122]H. Krishna, “Computational aspects of the bilinear transformation based algorithm for S-plane to Z-plane mapping,” IEEE Trans. on Automatic Control, vol. 3, no. 11, pp. 1086-1088, 1988.
[123]D. Sera, T. Kerekes, M. Lungeanu, P. Nakhost, R. Teodorescu, G. K. Andersen, and M. Liserre, “Low-cost digital implementation of proportional-resonant current controllers for PV inverter applications using delta operator,” 31st Annual Conference of IEEE Industrial Electronics Society, pp. 2518-2522, 2005.
[124]P. C. Tan, P. C. Loh, and D. G. Holmes, “High-performance harmonic extraction algorithm for a 25 kV traction power quality conditioner,” IEE Proc.-Electric Power Applications, vol. 151, no. 5, pp. 505-512, 2004.
[125]M. J. Newman, D. N. Zmood, and D. G. Holmes, “Stationary frame harmonic reference generation for active filter systems,” IEEE Trans. on Industry Applications, vol. 38, no. 6, pp. 1591-1599, 2002.
[126]R. Middleton and G. Goodwin, “Improved finite word length characteristics in digital control using delta operators,” IEEE Trans. on Automatic Control, vol. 31, no. 11, pp. 1015-1021, 1986.
[127]M. J. Newman and D. G. Holmes, “Delta operator digital filters for high performance inverter applications,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 447-454, 2003.
[128]J. Kauraniemi, T. I. Laakso, I. Hartimo, and S. J. Ovaska, “Delta operator realizations of direct-form IIR filters,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 1, pp. 41-52, 1998.
[129]王文俊,「認識Fuzzy」,全華科技圖書,2001。
[130]李允中,王小潘,蘇木春,「模糊理論及其應用」,全華科技圖書,2004。
[131]俞克維,「控制系統分析與設計使用MATLAB」,新文京開發出版,2004。
[132]S. Mori, K. Mastsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro, “Development of a large static var generator using self-commutated inverters for improving power system stability,” IEEE Trans. on Power Systems, vol. 8, no. 1, pp. 371-377, 1993.
[133]梁適安,「交換式電源供給器之理論與實務」,全華書局,2006。
[134]L. Asiminoaei, S. Hansen, C. Lascu, and F. Blaabjerg, “Selective harmonic current mitigation with shunt active power filter,” European Conference on Power Electronics and Applications, pp. 1-10, 2007.
[135]Q. Fang, X.Wu, and J. Liu, “Novel source current detection control of active power filter with selective harmonic compensation,” IEEE 6th International Power Electronics and Motion Control Conference, pp. 2377-2381, 2009.
[136]R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 580-586, 2004.
[137]N. A. Rahim, S. Mekhilef, and Z. Islam, “A new approach for harmonic compensation using single-phase hybrid active power filter,” IEEE Region 10 TENCON, pp. 1-5, 2005.
[138]N. A. Rahim, S. Mekhilef, and I. Zahrul, “A single-phase active power filter for harmonic compensation,” IEEE International Conference on Industrial Technology, pp. 1075-1079, 2005.
[139]S. Guo and D. Liu, “Rotating transformation and resonant control based feedback control strategy for dynamic voltage restorer system,” 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, pp. 333-338, 2010.
[140]Texas Instruments, TMS320xF28335/282334/28332 Digital Signal Controllers Data Manual, 2008.
[141]鐘國家,謝勝治,「感測器原理與應用實習」,全華科技圖書,2001。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top