跳到主要內容

臺灣博碩士論文加值系統

(3.238.49.228) 您好!臺灣時間:2022/10/07 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡靜
研究生(外文):Yi Ching Chen
論文名稱:有氧間隔性運動訓練及中度持續性運動訓練對發炎性血栓的影響
論文名稱(外文):Effects of Aerobic Interval Exercise Training and Moderate Continuous Exercise Training on Inflammatory Thrombosis
指導教授:王鐘賢王鐘賢引用關係
指導教授(外文):J. S. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:物理治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:88
中文關鍵詞:嗜中性白血球微粒凝血脢有氧間隔性運動訓練
外文關鍵詞:neutrophilsmicroparticlesthrombinaerobic interval exercise training
相關次數:
  • 被引用被引用:2
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
嗜中性白血球所釋放具有促凝血功能的微粒,會加速發炎時病態血栓的形成。本研究想釐清在有氧間隔性運動訓練及中度持續性運動訓練前後,對於嗜中性白血球所釋放的微粒及其調節凝血酶生成的改變和影響。為了觀察不同運動方式的效果,我們徵選20位健康的靜態生活男性,在訓練前後進行最大運動測試及在12%氧濃度環境下的急性低氧運動測試。實驗過程以直立固定式腳踏車進行訓練,將受測者平均分為兩組,分別為中度持續性運動訓練組(進行60%最大攝氧量作功量的運動訓練)、有氧間隔性運動訓練組(進行40%、80%最大攝氧量作功量交替的運動訓練),訓練頻率為一天30分鐘,一週5天,共5週。在急性低氧運動測試前後,利用流式細胞儀測量嗜中性白血球釋放的微粒特性,另外用螢光讀盤儀測量凝血酶生成的動態參數。實驗結果顯示,急性低氧運動會促使嗜中性白血球釋放更多微粒,並使其表面的磷脂酰絲氨酸表現增加,進而造成凝血酶生成速率加快。而經由一個為期5週的有氧間隔性運動訓練及中度持續性運動訓練後,會減少因急性低氧運動所促使的嗜中性白血球釋放微粒表面上所表現的磷脂酰絲氨酸和組織因子,此外,也會降低因嗜中性白血球釋放微粒調節的凝血酶生成速率。
The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. This study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticles (NDMP) release and NDMP-mediated thrombin generation (TG). Twenty sedentary healthy men performed a maximal exercise test and acute hypoxia (12%O2) exercise test before and after exercise training on a bicycle ergometer. Twenty men will be randomly divided into two groups. Each group (n=10) will receive to one of two group: moderate continuous exercise training group (60-70%VO2max) and aerobic interval exercise training group (reciprocal 40%, 80%VO2max) for 30 minutes/day, 5 days/week for 5 weeks. At rest and immediately after acute hypoxia exercise test, the NDMP characteristics and dynamic thrombin generation parameters were measured by two-color flow cytometry and calibrated, automatic thrombinography, respectively. In our data, acute 12%O2 exercise increased release of micrparticles from neutrophils and up-regulated expression of phosphatidylserine (PS) on NDMP, which responses were accompanied by elevated thrombin peak height and increased TG rate in NDMP-rich plasma. However, both MCT and AIT for 5 weeks decreased levels of tissue factor-rich and PS-exposed microparticles released from neutrophils and depressed NDMP-mediated dynamic TG in plasma at rest and following the 12%O2 exercise.
指導教授推薦書
口試委員會審定書
國家圖書館 博碩士論文電子檔案上網授權書 ... iii
長庚大學博碩士論文著作授權書... iv
致謝 ... v
摘要 ... vi
Abstract ... vii
目錄 ... viii
第一章 緒論 ... - 1 -
1.1 研究背景及目的 ... - 1 -
1.2 研究假設 ... - 3 -
第二章 文獻回顧 ... - 4 -
2.1 發炎、血栓與疾病 ... - 4 -
2.2 血栓形成的機制 ... - 5 -
2.2.1 血小板的聚集 ... - 5 -
2.2.2 血液凝固反應 ... - 6 -
2.2.3 纖維蛋白溶解 ... - 7 -
2.3 發炎和血栓相關的因素 ... - 8 -
2.3.1 多形核性白血球... - 8 -
2.3.2 多形核性白血球的病理角色 ... - 9 -
2.3.3 多形核性白血球的促凝血機制 ... - 10 -
2.4 運動對發炎性血栓相關因子的影響 ... - 13 -
2.4.1 運動對血小板活性的影響... - 13 -
2.4.2 運動對血液凝集以及纖維蛋白溶解的影響 ... - 15 -
2.4.3 運動對白血球和發炎的影響 ... - 15 -
2.5 有氧間隔性運動訓練... - 16 -
第三章 實驗設計 ... - 18 -
3.1 實驗材料 ... - 18 -
3.1.1 試劑 ... - 18 -
3.1.2 儀器 ... - 20 -
3.2 實驗方法 ... - 22 -
3.2.1 受試者 ... - 22 -
3.2.2 研究設計 ... - 23 -
3.2.3 研究步驟 ... - 23 -
3.2.4 試劑溶液置備 ... - 26 -
3.2.5 多形核性白血球萃取 ... - 27 -
3.2.6 富含血小板之血漿製備 ... - 28 -
3.2.7 缺乏血小板之血漿製備 ... - 28 -
3.2.8 偵測多形核性白血球及其釋放微粒上磷脂酰絲氨酸和
組織因子表現的量 ... - 28 -
3.2.9 偵測多形核性白血球及其釋放微粒調節的凝血酶生成- 29 -
3.3 資料擷取與統計分析... - 30 -
第四章 實驗結果 ... - 32 -
4.1 受測者基本資料、訓練前後的最大運動表現 ... - 32 -
4.2 急性低氧後體內白血球和嗜中性白血球的數量變化 ... - 33 -
4.3 嗜中性白血球及其釋放微粒上表現的凝血物質... - 33 -
4.4 嗜中性白血球及其釋放微粒調節凝血酶生成 ... - 34 -
第五章 討論 ... - 37 -
5.1 急性低氧運動對發炎性血栓的影響 ... - 37 -
5.2 不同運動訓練對發炎性血栓的影響 ... - 39 -
5.3 不同運動訓練對於最大運動表現的影響 ... - 43 -
5.4 研究限制 ... - 44 -
第六章 結論 ... - 45 -
參考資料 ... - 46 -
圖表附錄 ... - 55 -
表一 受測者基本資料與最大運動表現 ... - 55 -
圖一 血液中和血栓形成相關的要素 ... - 56 -
圖二 2009 年國人十大死因統計 ... - 57 -
圖三 血液凝固及纖維蛋白溶解 ... - 58 -
圖四 發炎對調節血液凝固反應的影響 ... - 59 -
圖五 動脈粥樣硬化斑塊破裂時凝血反應和發炎共同活化 ... - 60 -
圖六 不同運動強度對於白血球免疫功能的影響 ... - 61 -
圖七 螢光讀盤儀讀取凝血酶生成的分析參數 ... - 62 -
圖八 訓練前後經急性低氧刺激的總白血球與各類型白血球數量
變化 ... - 63 -
圖九 不同運動訓練方式及不同刺激所產生的嗜中性白血球所釋
放的微粒數量 ... - 64 -
圖十 不同運動訓練方式及不同刺激下嗜中性白血球所釋放微粒
的膜上促凝血因子的表現 (百分比) ... - 65 -
圖十一 不同運動訓練方式及不同刺激下嗜中性白血球膜上促凝
血因子的表現 (百分比) ... - 66 -
圖十二 不同運動訓練方式對嗜中性白血球及血小板對凝血酶生
成的調節 ... - 67 -
圖十三 不同運動訓練方式下以LPS 刺激,無血小板介入,嗜中性
白血球及其釋放微粒對凝血酶生成的調節... - 68 -
圖十四 不同運動訓練方式下以LPS 刺激,血小板介入,嗜中性白
血球及其釋放微粒對凝血酶生成的調節 ... - 69 -
圖十五 不同運動訓練方式下以PMA刺激,無血小板介入,嗜中
性白血球及其釋放微粒對凝血酶生成的調節 ... - 70 -
圖十六 不同運動訓練方式下以PMA刺激,血小板介入,嗜中性
白血球及其釋放微粒對凝血酶生成的調節... - 71 -
附錄一 受試者參與實驗同意書 ... - 72 -
附錄二 身體狀況與活動情形調查表 ... - 74 -
附錄三 人體試驗倫理委員會同意臨床試驗證明書 ... - 76 -

1. Andrew M, Carter C, O’Brodovich H, and Heigenhauser G. Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol. 1986; 60: 1917-1922.
2. Barron HV, Harr SD, Radfort MJ, Wang Y, and Krumholz HM. The association between white blood cell count and acute myocardial infarction mortality in patients > or =65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol. 2001; 38: 1654-1661.
3. Cassatella MA. The production of cytokines by PMN. Immunol Today. 1995; 16: 21-26.
4. Cusack MR, Marber MS, Lambiase PD, Bucknall CA, and Redwood SR. Systemic inflammation in unstable angina is the result of myocardial necrosis. J Am Coll Cardiol. 2002; 39: 1917-1923.
5. Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, and Distler O. Microparticles as regulators of inflammation. Novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum. 2005; 52: 3337-3348.
6. El-Sayed M. Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med. 1996; 22: 282-298.
7. El-Sayed M, Ali N, El-Sayed A. Aggregation and activation of blood platelets in exercise training. Sports Med. 2005; 35: 11-22.
8. El-Sayed M, El-Sayed Z, and Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sport Med. 2004; 34: 181-200.
9. Enjeti AK, Lincz LF and Seldon M. Microparticles in health and disease. Semin Thromb Hemost. 2008; 34: 683-692.
10. Esmon CT, Fukudome K, Mather T, Bode W, Regan LM, Stearns-kurosawa DJ, and Kurosawa S. Inflammation, sepsis, and coagulation. Haematologica. 1999; 84: 254-259.
11. Faint RW, Mackie IJ and Machin SJ. Platelet aggregation is inhibited by a nitric oxide-like factor released from human neutrophils in vitro. Br J Haematol. 1991; 71: 539-545.
12. Faxon DP, Creager MA, Smith SC Jr, Pasternak RC, Olin JW, Bettmann MA, Criqui MH, Milani RV, Loscalzo J, Kaufman JA, Jones DW, and Pearce WH. Pearce atherosclerotic vascular disease conference: executive summary: atherosclerotic vascular disease conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation. 2004; 109: 2595-2604.
13. Gasser O and Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004; 104: 2543-2548.
14. Gillis S, Furie BC, and Furie B. Interactions of neutrophils and coagulation proteins. Semin Hematol. 1997; 34: 336-342.
15. Gorbet MB and Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004; 25: 5681-5703.
16. Goto S, Ikeda Y, Murata M, Handa M, Takahashi E, Yoshioka A, Fujimura Y, Fukuyama M, Handa S, and Ogawa S. Epinephrine augments von Willebrand factor-dependent shear-induced platelet aggregation. Circulation. 1997; 86: 1859-1863.
17. Hagberg IA, Roald HE and Lyberg T. Adhesion of leukocytes to growing arterial thrombosis. Thromb Haemost. 1998; 80: 852-858.
18. Huang ZC, Chien KL, Yang CY, Wang CH, Chang T, and Chen CJ. Peripheral differential leukocyte counts and subsequent mortality for all diseases, cancers, and cardiovascular diseases in Taiwanese. J Formos Med Assoc. 2003; 102: 775-781.
19. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999; 222: 283-292.
20. Ji LL, Katz A, Fu RG, Parchert M, and Spencer M. Alteration of blood glutathione status during exercise: The effect of carbohydrate supplementation. J Appl Physiol. 1993; 74: 788-792.
21. Lehmann M, Hasler K, Bergdolt E, and Keul J. Alpha-2-adrenoreceptor density on intact platelets and adrenaline- induced platelet aggregation in endurance-and nonendurance-trained subjects. Int. J. Sports Med. 1986; 7: 172-176.
22. Levi M, van der Poll T and Büller HR. Bidirectional Relation Between Inflammation and Coagulation. Circulation. 2004; 109: 2698-2704.
23. Li DB, Hua Q, Liu Z, Li J, Xu LQ, Wang S, and Jin WY. Association between inflammatory mediators and angiographic morphologic features indicating thrombus formation in patients with acute myocardial infarction. Chin Med J. 2009; 122(15): 1738-1742.
24. Libby P, and Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002; 8: 1257–1262.
25. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, and Tedgui A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000; 101: 841-843.
26. Mesri M and Altieri DC. Endothelial cell activation by leukocyte microparticles. J Immunol. 1998; 161: 4382-4387.
27. Mesri M and Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem. 1999; 274:23111-23118.
28. Mickelson JK, Lakkis NM, Villarreal-Levy Hughes BJ, and Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol. 1996; 28: 345-353.
29. Moholdt TT, Amundsen BH., Rustad LA, Wahba A, Løvø KT, Gullikstad LR, Bye A, Skogvoll E, Wisløff U, and Slørdahl SA. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J. 2009; 158: 1031-1037.
30. Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, and Freyssinet JM. Procoagulant microparticles. Disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol. 2006; 26: 2594-2604.
31. Munk PS, Butt N, and Larsen AI. High-intensity interval exercise training improves heart rate variability in patients following percutaneous coronary intervention for angina pectoris. Int J Cardiol. 2010; 145(2): 312-314.
32. Munk PS, Staal EM, Butt N, Isaksen K, and Larsen AI. High-intensity interval training may reduce in-stent restenosis following percutaneous coronary intervention with stent implantation: a randomized controlled trial evaluating the relationship to endothelial function and inflammation. Am Heart J. 2009; 158: 734-741.
33. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, and Becker AE. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002; 106: 2894-2900.
34. Nieman DC. Does Exercise Alter Immune Function and Respiratory Infections? President’s Council on Physical Fitness and Sports. 2001; 3: 1-8.
35. Perrin J, Lecompte T, Tournier A, Morlon L, Marchand-Arvier M, and Vigneron C. In vitro effects of human neutrophil cathepsin G on thrombin generation: Both acceleration and decreased potential. Thromb Haemost. 2010; 104: 514-522.
36. Piccin A, Murphy WG, and Smith OP. Circulating microparticles : pathophysiology and clinical implications. Blood Rreviews. 2007; 21: 157-171.
37. Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DI, and Plow EF. Expression, activation, and function of integrinαMβ2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008; 112: 2327-2335.
38. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, and Ahn YS. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003; 41: 211-217.
39. Raghavan SAV and Dikshit M. Recent advances in the status and targets of antithrombotic agents. Drugs Fut. 2002; 27(7): 669.
40. Robertson JD, Maughan RJ, Duthie GG, and Morrice PC. Increased blood antioxidant systems of runners in response to training. Clin Sci. 1991; 80: 611-618.
41. Samis JA, Garrett M, Manuel RP, Nesheim ME, and Giles AR. Human neutrophil elastase activates human factor V but inactivates thrombin-activated human factor V. Blood. 1997; 90:1065-1074.
42. Steffel J, Luscher TF, and Tanner FC. Tissue factor in cardiovascular diseases-molecular mechanisms and clinical implications. Circulation. 2006; 113: 722-731.
43. Stief TW, Kurz J, Doss MO, and Fareed J. Singlet oxygen inactivates fibrinogen, factor V, factor VIII, factor X, and platelets aggregation of human blood. Thromb Res. 2000; 97: 473-480.
44. Suzuki T, Yamauchi K, Yamada Y, Furumichi T, Furui H, Tsuzuki J, Hayashi H, Sotobata I, and Saito H. Blood coagulability and fibrinolytic activity before and after physical training during the recovery phase of acute myocardial infarction. Clin Cardiol. 1992; 15: 358-364.
45. Thom SR, Yang M, Bhopale VM., Huang S, and Milovanova TN. Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries. J Appl Physiol. 2011; 110: 340-351.
46. Van den Burg PJ, Hospers JEH, Mosterd WL, Bouma BN, and Huisveld IA. Aging physical conditioning, and exercise-induced changes in hemostatic factors and reaction products. J Appl Physiol. 2000; 88(5): 1558-1564.
47. Vischer U and Wollheim C. Epinephrine induces von Willebrand factor release from cultured endothelial cells: involvement of cyclic AMP-dependent signalling in exocytosis. Thromb. Haemost. 1997; 77: 1182-1188.
48. Wang JS. Intense exercise increases shear-induced platelet aggregation through enhancement of von Willebrand factor Binding ,glycoprotein IIb/IIIa activation and P-selectin expression. Eur. J. Appl. Physiol. 2004; 91: 741-747.
49. Wang JS, Cheng ML, Yen HC, Lou BS, and Liu HC. Vitamin E suppresses enhancement of factor VIII-dependent thrombin generation by systemic hypoxia. Stroke. 2009; 40(2): 656-659.

50. Wang JS, Chow S, Chen J, and Wong M. Effect of exercise training on oxidized LDL-mediated platelet function in rats. Thromb. Haemost. 2000; 83: 503-508.
51. Wang JS, Jen C, and Chen H. Effects of exercise training and deconditioning on platelet function in men. Arteriosc. Thromb. Vasc. Biol. 1995; 15: 1668-1674.
52. Wang JS, Li Y, and Chen J. Effects of exercise training and deconditioning on platelet Aggregation induced by alternating shear stress in men. Arteriosclero. Thromb. Vasc. Biol. 2005; 22: 454-460.
53. Wang JS, Lin C, Chen J, and Wong M. Role of chronic exercise in decreasing oxidized LDL-potentiated platelet activation by enhancing platelet-derived NO release and bioactivity in rats. Life Sci. 2000; 66: 1937-1948.
54. Warburton DER, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, and Chan SY. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005; 95: 1080-1084.
55. Watts EJ. Haemostatic changes in long-distance runners and their relevance to the prevention of ischaemic heart disease. Blood Coagul Fibrinolysis. 1991; 2: 221-225.
56. Weiss C, Seitel G, and Bartsch P. Coagulation and fibrinolysis after moderate and very heavy exercise in healthy male subjects. Med. Sci. Sports Med. 1998; 30: 246-251.

57. Wilkie RP, Vissers MC, Dragunow M, and Hampton MB. A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils. Infect Immun. 2007; 75: 3256-3263.
58. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, and Skjærpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients-a randomized study. Circulation. 2007; 115: 3086-3094.
59. Zatta A, Prosdocimi M, Bazzoni G, Dejana E, and Del Maschio A. Inhibition of platelet function by polymorphonuclear leukocytes. J Lab Clin Med. 1990; 116: 651-660.
60. 張雅綸,<低氧運動訓練對單核球釋放微粒調節凝血脢生成的影響 >,長庚大學,碩士論文,2010

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top