(3.236.118.225) 您好!臺灣時間:2021/05/14 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔣芝佳
研究生(外文):Chiang,Jr-Chia
論文名稱:以紫外光固化聚合物製作非對稱式Y-型分光元件之研究
論文名稱(外文):The study of asymmetric Y-branch splitter by UV-curable polymer
指導教授:李偉裕李偉裕引用關係
指導教授(外文):Lee,wei-yu
口試委員:莊為群李偉裕林晏瑞
口試委員(外文):Chuang,Wei-ChingLee,wei-yuLin,Yen-Juei
口試日期:2011-07-09
學位類別:碩士
校院名稱:中華科技大學
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:光波導同調耦合Y-型波導非對稱分光器光感高分子
外文關鍵詞:optical waveguidecoherent-coupling effectY-branchasymmetric split ratiophotoreactive polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在高分子材料裡,部分都使用感光式的高分子材料,直接以微影技術,利用曝光的方式來改變高分子材料之折射率,便能完成元件之製作,甚至是以壓模的方式直接定義出元件形狀便完成,前述之技術和傳統的乾式蝕刻(Dry etching)或是濕式蝕刻(Wet etching)的方式比較,將可以大大的增加生產速度和大幅降低生產的成本。感光高分子(Photo reactive polymer)材料已經廣泛地應用在積體光學元件(integrated optics)、波導元件(waveguide component)和記錄元件(memory devices)。其中又以含偶氮分子材料,像是DR1(disperse red1),受到廣泛研究與應用。另一方面,有機材料相對於無機材料,對雷射有高度的抗破壞性,以及價格低廉、製程容易、和可塑性佳等優點,這種材料非常適合應用在非線性光學應用及研究。
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
目次. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
圖表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
第一章 序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 積體光學. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 內容概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章 光波導之基本理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1光波導基本理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 光束傳播法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第三章 光波導製作方法與種類. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 光波導的種類. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 導波控制方法的簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3非對稱式Y-形光功率分離器. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第四章 設計與模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 同調耦合效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 元件設計與模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2-1 聚合物Y-分支光功率分離器結構設計. . . . . . . . . . . . . . . . . . . . 30
4.2-2 多分支聚合物非對稱Y-分支光功率分器. . . . . . . . . . . . . . . . . . . 33
第五章 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

參考文獻

[1]O. Mikami, and S. Zembutsu, “Coupling-length adjustment for and optical directional coupler as a 2×2 switch”, Appl. Phys. Lett., vol. 35, pp.2321-2325,Dec. 1981.
[2]R.R.Rics, J.D. Zino, D.A. Bryan, E.A. Dalke and W.R. Reed, “Multiwavelength monolithic integrated fiber-optic terminal”, Proc. Soc. Photo-Optical Instr. Eng., vol. 176, pp. 133,1979.
[3]Takada, K.; Abe, M.; Hida, Y.; Shibata, T.; Ishii, M.; Himeno, A.; Okamoto, K. “Fabrication of 2 GHz-spaced 16-channel arrayed-waveguide grating demultiplexer for optical frequency monitoring applications.” Electronics Lett, Vol. 36 Issue: 19, pp. 1643 –1644. 14 Sept. 2000
[4]T. Fujino, K. Sasaki and K. Marumoto, “X-ray mask fabrication process using Cr mask and ITO stopper in the dry etch of W absorber”, Jpn. J. Appl. Phys., vol. 31, pp. 4086-4090, Dec. 1992.
[5]T. Tamir, Integrated Optics, Springer, 1979.
[6]H.-B. Lin, J.-Y. Su, R.-S. Cheng, and W.-S. Wang,” Novel optical single-mode asymmetric y-branches for variable power splitter, ” Journal of Quantum Electronics, Vol. 35, No. 7, pp. 1092-1096, July 1999.
[7]蘇振嘉, “同調耦合型彎曲波導之研製, ”國立台灣大學電機工程學研究所碩士論文, 2001.
[8]J. J. Su and W. S. Wang, “Novel coherently-coupled multi-sectional bending optical waveguide,” Photo. Tech. Letters, August 2002.
[9]H.-B. Lin, J.-Y. Su, R.-S. Cheng, and W.-S. Wang, “Novel Optical Single-mode Asymmetric Y-branches for Variable Power Splitter,” J. Quantum Electron., vol.35, pp. 1092-1096, July 1999.
[10]J. J. Su and W. S. Wang, “Novel Coherently-Coupled Multi-sectional Bending Optical Waveguide,”IEEE Photo. Tech. Lett., vol. 14, pp.1112-1114, 2002.
[11]M. J. Adams, An Introduction to Optical Waveguides, John Wiley &Sons, 1981.
[12]T. Tamir, Guides-Wave Optoelectronics, Springer-Verlag, 1988.
[13]G. B. Hocker and W. K. Burns, “Modes in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron.,vol. QE-11, pp. 270-276, 1975.
[14]G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method, ” Appl. Opt., vol. 16, pp. 113-118, 1977.
[15]M. J. Adams, An Introduction to Optical Waveguides, John Wiley & Sons, 1981.
[16]A. Gedeon, “Comparison between rigorous theory and WKB-analysis of modes in graded-index waveguides,” Opt. Commun., vol. 12, pp. 329-332, 1974.
[17]J. Jan ta and J. Ctyroky, “On the accuracy of WKB analysis of the TE and TM modes in planar graded-index waveguides,” Opt. Commun., vol. 25, pp. 49-52, 1978.
[18]J. Chilwell and I. Hodgkinson, “Thin-film field-transfer matrix theory of planar multiplayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Amer. A, vol. 1, pp. 742-753, 1984.
[19]P. K. Mishra and A. Sharma, “Analysis of single mode imhomogeneous planar waveguides,” J. Lightwave Technol., vol. 4, pp. 204-211, 1986.
[20]A. Sharma and P. Bindal, “Variational analysis of diffused planar and channel waveguides and directional couplers,” J .Opt. Soc. Am. A, vol. 11, pp. 2244-2248, 1994.
[21]K. Bierwirth, N. Schulz, and F. Arndt. “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.1104-1114, 1986.
[22]C. J. Xu, W. P. Huang, M. S. Sterm, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron., vol. 141, pp.281-286, 1994.
[23]J. Katz, “Novel solution of 2-D waveguides using the finite element method,” Appl. Opt., vol. 21, pp. 2747-2750, 1982.
[24]K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic-field components,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.1120-1124, 1986.
[25]C. Vassallo, “Improvement of finite difference methods for step-index optical waveguides,” IEE Proc. J., vol. 139, pp. 56-63, 1992.
[26]J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama, and H. Nakano, “Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides,” IEEE Photon. Technol. Lett., vol. 9, pp. 961-963, 1997.
[27]J. Yamauchi, G. Takahashi, and H. Nakano, “Modified finite-difference formula for semivectorial H-field solutions of optical waveguides,” IEEE Photon. Technol. Lett., vol. 10, pp. 1127-1129, 1998.
[28]G. R. Hadley, “Low-truncation-error finite difference equations for photonics simulation I: beam propagation,” J. Lightwave Technol., vol. 16, pp. 134-141, 1998.
[29]Y. P. Chiou, Y.C. Chiang, and H. C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” J. Lightwave Technol., vol. 18, pp. 243-251, 2000.
[30]Z. E. Abid, K. L. Johnson, and A. Gopinath, “Analysis of dielectric guides by vector transverse magnetic field finite elements,” J. Lightwave Technol., vol. 11, pp. 1545-1549, 1993.
[31]M. Koshiba, S. Maruyama, and K. Hirayama, “A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems,” J. Lightwave Technol., vol. 12, pp. 495-502, 1994.
[32]D. U. Li and H. C. Chang, “An efficient full-vectorial finite-element modal analysis of dielectric waveguides incorporating imhomogeneous elements across dielectric discontinuities,” IEEE J. Quantum Electron., vol. 36, pp. 1251-1261, 2000.
[33]Kogelnik, H., and C.W. Shank, “Couple wave theory of distributed Bragg reflector”, Journal of Applied Physics, vol. 4., pp. 2327-2335,1972
[34]Yariv A., “Coupled mode theory for guided-wave optics”, IEEE Journal of Quantum Electronics, vol. QE-9, pp.919-933, 1973.
[35]Erdogan, T., “Fiber grating spectra”, J. Lightwave Technol., vol. 15,pp.1277-1294, 1997.
[36]A. M. Prokhorov and Yu S. Kuz’minov, “Physics and Chemistry of CrystallineLithium Niobate,” Adam Hilger, Bristol and New York, 1990.
[37]Properties of Lithium Niobate, INSPEC, The Institution of Electrical Engineers,London and New York, 1989.
[38]C.L. Callender, J.F.Viens, J.P.Noad, L.Eldada, ”Compact Low-cost tunable acrylate polymer arrayed-waveguide grating multiplexer,” Electron Lett .,vol.35,pp.1839-1840,1999.
[39]A.J. Beuhler,D.A. Wargowski ,K.D. Singer,T.Kowalczyk, Fabrication of low loss Polymer waveguides using thin film multichip module process technology,” IEEE transaction on, vol.18,pp.232-234, May.1995.
[40]A.Neyer, T.Knoche, L.Muller, “Fabrication of low loss Polymer waveguides using injection molding technology , “Electron. Lett., Vol. 29 , pp. 399-401 , 1993.
[41]許志宏, “建構在矽基板上之新型埋藏式複合高分子波導,” 國立中山大學光電研究所碩士論文2000。
[42]莊淑雯, “建構在玻璃基板上高分子波導,”國立中山大學光電研究所碩士論文 2000。
[43]黃家智, “多分支光功率分離器之研究,”國立臺灣大學光電工程學研究所博士 2002。
[44]H. Sasaki, E. Shki, and N. Mikoshiba, “Propagation characteristics of optical guided wave in asymmetric branching waveguides,” IEEE J. Quantum Electron., vol. QE-17, no. 6, pp. 1051-1058, June 1981.
[45]K. Ogusu, “Transmission characteristics of single-mode asymmetric dielectric waveguide Y-junctions,” Opt. Commun., vol. 53, pp. 169-172, 1985.
[46]K. Shirafuji and S. Kurazono, “Transmission characteristics of optical asymmetric Y junction with a gap region,” J. Lightwave Technol., vol. 9, pp. 426-429, 1991.
[47]H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,”IEEE J. Quantum Electron., vol. 30, no. 5, pp. 2827-2835, Dec. 1994.
[48]H. B. Lin, R. S. Cheng, and W. S. Wang, “Wide-angle low-loss single-mode symmetric Y-junctions,” IEEE Photon. Technol. Lett., vol. 6, pp. 825-827, July 1994.
[49]H. B. Lin, Y. B. Lin, and W. S. Wang, “Analysis of abrupt waveguide bend with low-index microprism,” IEEE J. Quantum Electron., vol. 34, no. 12, pp. 2291-2297, Dec. 1998.
[50]W. C. Chang and H. B. Lin, “A novel low-loss wide-angleY-branch with a diamond-like microprism,” IEEE Photon. Technol. Lett., vol. 11, pp. 683-685, June 1999.
[51]H. F. Taylor, “Power Loss at Directional Change in Dielectric Waveguides,” Appl. Opt., vol. 13, pp.642-647, 1974.
[52]H. F. Taylor, “Losses at Corner Bends in Dielectric Waveguides,” Appl. Opt., vol. 16, pp.711-716, 1977.
[53]L. M. Johnson and D. Yap, “Theoretical analysis of coherently coupledoptical waveguide bends,” Appl. Opt., vol. 23, pp. 2988-2990, 1984.
[54]S. Kawakami and K. Baba, “Field distribution near an abrupt bend in single-mode waveguides: a simple model,” Appl. Opt., vol.24, pp.3643-3647, 1985.
[55]T. Shiina, K. Shiraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett., vol.11, pp.736-738, 1986.
[56]L. M. Johnson and F. J. Leonberger, “Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Soc. Am., vol.8, pp.111-113, 1983.
[57]Liu, X.; De La Rue, R.M.; Krauss, T.F.; Thomas, S.; Hickd, S.E.; Atchison, J.S.; “Electron Beam Production of Phase Masks for Direct Writing of Photo-Induced Gratings,” Lasers and Electro-optics Europe, 1996. CLEO/Europe., Conference on, 8-13 Sept. 1996
[58]Nishihara.H., Y.Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” Proc. SPIE, 239:134, 1980
[59]Schmahl.G., and D.Rudolph, “Holographic diffraction grating,” In: Progress in Optics, E.Wolf, ed., North-Holland, Amsterdam, 14, pp.195, 1976
[60]Abdulaziz M.A., Abu B.M., Abu S.S.M.S., Zaid A.S., Ian Y., “Fabrication and characterization of polymer thermo-optic switch based on mmi coupler,” Opt. Comm. Vol.284, pp.1181-1185, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔