跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉育辰
研究生(外文):Liu Yu Chen
論文名稱:三度空間線性正切導引法則應用之研究
論文名稱(外文):A Study on the Application of Three-Dimensional Linear Tangent Guidance Law
指導教授:陳正興陳正興引用關係
指導教授(外文):Chern, Jeng Shing
口試委員:藍庭顯吳岸明
口試委員(外文):Lan, Ting HsienWu, An Ming
口試日期:2011-06-01
學位類別:碩士
校院名稱:中華科技大學
系所名稱:飛機系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:138
中文關鍵詞:導引法則線性正切導引法則台灣小型發射載具俯仰面導引偏航面導引精確入軌
外文關鍵詞:guidance lawlinear tangent guidance lawTaiwan small launch vehiclepitch plane guidanceyaw plane guidanceorbit insertion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
發射載具之導引技術的發展已經超過半個世紀,導引法則在相關書籍與論文資料都可以找到,但是導引技術必須配合發射載具的特性進行設計,選擇合適的導引法則與控制法則,從初步設計、細部設計、系統模擬到飛行驗證,飛行驗證後還要進行導控結果的分析,根據分析結果進行必要的改進,再進行系統模擬與飛行驗證,歷經長時間多次的努力才能成功,可以說是「量身打造」,才能發揮發射載具的性能,成為一套完全自主發展的發射系統。
本文的目的是初步探討我國未來可能發展之小型發射載具的導引法則,以線性正切導引法則為基礎,主要著眼點在提升入軌精確度。首先模擬從台灣發射之俯仰面(垂直面)的線性正切導引法則,接著模擬從台灣發射之偏航面(水平面)的線性正切導引法則,最後進行從台灣發射之三度空間線性正切導引法則的模擬,顯示可以達到精確入軌的需求,本文考慮之干擾因素為垂直干擾力。
為了執行線性正切導引法則性能的模擬,必須先設定一條基準軌道(nominal trajectory),接著加入干擾因素,模擬實際飛行軌道偏離基準軌道的情形,然後加入線性正切導引法則,把受到干擾之發射載具從偏離之軌道導引回基準軌道,確保衛星的準確入軌。基準軌道所使用之發射載具,是將日本的M-V火箭略加縮小而來,可以將1,000公斤重的人造衛星送入646公里高的圓軌道,大氣資料採用NASA建立的模型。干擾力是垂直力,主要來源是推力不正與氣動力。
俯仰面上的垂直干擾力是在當地垂直面內,與速度向量垂直,分為較大與較小兩個情況,較大為較小的兩倍,干擾的結果是使飛行路徑角偏離基準值。偏航面的垂直干擾力是在當地水平面內,與速度向量垂直,干擾的結果是使航向角偏離基準值,亦分較大與較小兩種情況進行模擬。本文先就俯仰面與偏航面分別作模擬,以驗證線性正切導引法則分別在俯仰面與偏航面的導引性能,然後進行三度空間的導引模擬,模擬結果不論在較大或較小干擾力情況下,線性正切導引法則都可以將發射載具導回基準軌道,達到精確入軌的目的。
關鍵詞:導引法則、線性正切導引法則、台灣小型發射載具、俯仰面導引、偏航面導引、精確入軌

The launch vehicle guidance and control technologies have been developed for more than half a century. In fact, relevant information about launch vehicle guidance and control technologies can be found in the books and papers. Technologies may be learned but systems must be developed indigenously, especially the large-scale aerospace systems. The performances of guidance and control technologies must match the characteristics of the launch vehicle. Selection of suitable guidance law and control law through the processes of preliminary design, detailed design, system simulation, flight test and verification is mandatory. The flight results must be validated through further simulation, test and verification, again and again to ensure the mission success. It can be said to be a "tailored" system.
In this thesis, the linear tangent guidance law for satellite launch from Taiwan is investigated. At first, the linear tangent guidance law is used in the pitch (local vertical) plane. Then it is used in the yaw (local horizontal) plane. Finally, it is used in the three-dimensional launch simulation. Precise orbit insertion has been obtained. In order to perform the simulation of the linear tangent guidance law for satellite launch from Taiwan, a nominal trajectory must be designed. Then, disturbance is added to cause deviation of the actual trajectory from the nominal trajectory. We then use linear tangent guidance law to guide the launch vehicle from the deviated trajectory back to the nominal trajectory. A launch vehicle model is obtained by scaling down the M-V rocket of the Institute of Space and Astronautical Science (ISAS), to be able to insert a 1,000 kg satellite into a 646 km altitude orbit. For the atmosphere, the National Aeronautical and Space Administration (NASA) established model is used. At first, we perform the simulation in the pitch (vertical) plane. Normal disturbance force is considered. It is in the local vertical plane and perpendicular to the velocity vector. This disturbance causes the flight path angle to deviate from the nominal value. The pitch plane linear tangent guidance can guide the launch vehicle back to its nominal flight. Then we perform the same simulation in the yaw plane. The disturbance force is in the local horizontal plane and pendicular to the velocity vector. It causes the heading angle to deviate from the nominal value. The yaw plane linear tangent guidance can eliminate the deviation and guide the launch vehicle back to its nominal flight. We then simulate the linear tangent guidance law in three-dimensional space. A three-dimensional normal disturbance force is considered. Simulation results show that the three-dimensional linear tangent guidance law can guide the launch vehicle back to the nominal trajectory. Consequently, the purpose of precise orbit insertion can be achieved.
Keywords: guidance law, linear tangent guidance law, Taiwan small launch vehicle, pitch plane guidance, yaw plane guidance, orbit insertion

摘要.................................................................................................................................I
ABSTRACT.................................................................................................................II
目次..............................................................................................................................IV
表目錄....................................................................................................................... VI
圖目錄.......................................................................................................................VII
第一章 序論.................................................................................................................1
第一節 前言.........................................................................................................1
第二節 文獻回顧.................................................................................................2
第三節 研究內容與章節介紹.............................................................................4
第二章 線性正切導引法則理論分析..........................................................................5
第一節 運動方程式..................................................................................5
第二節 線性正切導引法則................................................................................16
第三章 大氣模型、火箭特性與從台灣發射之基準軌道........................................18
第一節 大氣模型..............................................................................................18
第二節 火箭特性..............................................................................................23
第三節 基準軌道............................................................................................25
第四章 從台灣發射之俯仰面(垂直面)線性正切導引的模擬.............................30
第一節 引言......................................................................................................30
第二節 俯仰面受較小正垂直干擾力之干擾軌道..........................................30
第三節 俯仰面受較小正干擾力加線性正切導引之軌道..............................33
第四節 俯仰面受較小負干擾力加線性正切導引之軌道............................39
第五節 俯仰面受較大正干擾力加線性正切導引之軌道................................45
第六節 俯仰面受較大負干擾力加線性正切導引之軌道..............................51
第五章 從台灣發射之偏航面(水平面)線性正切導引的模擬.............................58
第一節 引言.....................................................................................................58
第二節 偏航面受較小正干擾力加線性正切導引之軌道.............................58
第三節 偏航面受較小負干擾力加線性正切導引之軌道.............................64
第四節 偏航面受較大正干擾力加線性正切導引之軌道.............................70
第五節 偏航面受較大負干擾力加線性正切導引之軌道.............................76
第六章 從台灣發射之三度空間線性正切導引的模擬…………………………..83
第一節 引言.....................................................................................................83
第二節 三度空間受較小正干擾力加線性正切導引之軌道.........................84
第三節 三度空間受較小負干擾力加線性正切導引之軌道........................89
第四節 三度空間受較大正干擾力加線性正切導引之軌道............................94
第五節 三度空間受較大負干擾力加線性正切導引之軌道............................99
第六節 三度空間26.565度方位角干擾力加線性正切導引之軌道...............104
第七節 三度空間(26.565+180)度方位角干擾力加線性正切導引之軌道....109
第七章 結論.........................................................................................................115
參考資料...................................................................................................................116

﹝1﹞N. A. Bletsos, “Launch Vehicle Guidance, Navigation, and Control,” Crosslink, The Aerospace Corporation magazine of advances in aerospace technology, Volume 10, Number 1, Summer 2009.
﹝2﹞Whitcombe, D.W., “Present and future advanced guidance techniques,” AD-754923, prepared by Air Force Systems Command, 1 November 1972, distributed by NTIS, US Department of Commerce
﹝3﹞MacPerson, D., “An explicit solution to the powered flight dynamics of a rocket vehicle,” Aerospace Report No. TDR-169 (3126) TN-2, 31 October 1962
﹝4﹞Nguyen, N.X., Johannesen, J.R., Mease, K.D., and Hanson, J.M., “Explicit guidance of drag-modulated aeroassisted transfer between elliptical orbits,” Journal of Guidance, Control, and Dynamics, Vol. 9, No. 3, May-June 1986, pp. 274-280
﹝5﹞Hough, M.E., “Explicit guidance along an optimal space curve,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 4, July-August 1989, pp. 495-504
﹝6﹞Ma, D.M., “Explicit guidance for aeroassisted orbital plane change,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 4, July-August 1996, pp. 582-587
﹝7﹞Kuo, Z.S., and Liu, K.C., “Explicit guidance of aeroassisted orbital transfer using matched asymptotic expansions,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, January- February 2002, pp. 80-87
﹝8﹞Sinha, S.K., and Shrivastava, S.K., “Optimal explicit guidance of multistage launch vehicle along three-dimensional trajectory,” Journal of Guidance, Control, and Dynamics, Vol. 13, No. 3, May-June 1990, pp. 394-403
﹝9﹞Jalali-Naini, S.H., “Modern explicit guidance law for high-order dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 5, September-October 2004, pp. 918-922
﹝10﹞Schierman, J.D., Hull, J.R., and Ward, D.G., “Adaptive guidance with trajectory reshaping for reusable launch vehicle,” paper AIAA-2002-4458, AIAA Guidance, Navigation, and Control Conference and Exhibit, 5-8 August 2002, Monterey, California
﹝11﹞Grasslin, M.H., Telaar, J., and Schottle, U.M., “Ascent and reentry guidance concept based on NLP-methods,” Acta Astronautica, Vol. 55, Issues 3-9, August-November 2004, pp. 461-471
﹝12﹞Perkins, F.M., “Derivation of linear-tangent steering laws,” Aerospace Report No. TR-1001(9990)-1, November 1966
﹝13﹞Springmann, P.N., “Lunar descent using sequential engine shutdown,” Master Thesis, Department of Aeronautics and Astronautics, MIT, 2006
﹝14﹞Brusch, R.G., “Bilinear tangent yaw guidance,” Guidance and Control Conference, Boulder, Colo., 6-8 August 1979, Collection of Technical Papers. (A79-45351 19-12) New York, AIAA, 1979, pp. 250-264
﹝15﹞Speyer, J.L., Feeley, T., and Hull, D.G., “Real-time approximate optimal guidance laws for the advanced launch system,” 1989 American Control Conference, 8th, Pittsburgh, PA, June 21-23, 1989, Proceedings. Vol. 3 (A89-53951 24-63). New York, AIAA, 1989, pp. 2032-2036
﹝16﹞Yamamoto, T., and Kawaguchi, J., “Guidance strategy in aerodynamic ascent path using air-breathing propulsion,” Nippon Koku Uchu Gakkai Nenkai Koenkai Koenshu, Vol. 36, 2005, pp. 237-240
﹝17﹞Brown, K.R., Harrold, E.F., and Johnson, G.W., “Rapid optimization of multiple-burn rocket flights,” NASA Report CR-1430, prepared by IBM Corp., Cambridge, Mass., for George C. Marshall Space Flight Center, September 1969
﹝18﹞Brown, K.R., and Johnson, G.W., “Rapid computation of optimal trajectories,” IBM Report 66-220-0002, Cambridge, Mass., 9 September 1966
﹝19﹞Johnson, G.W., and Brown, K.R., “On a singular control problem in optimal rocket guidance,” IBM Report, Cambridge, Mass., 12 April 1967
﹝20﹞Brown, K.R., and Johnson, G.W., “Real time optimal guidance,” IBM Report No. 66-220-0001, Cambridge, Mass., 30 August 1966
﹝21﹞Haeussermann, W., “Description and performance of the Saturn launch vehicle’s navigation, guidance, and control system,” NASA TN D-5869, George C. Marshall Space Flight Center, NASA, July 1970
﹝22﹞“Optimal guidance algorithm sensitivity analysis,” IBM Report No. 71W-00182, prepared for George C. Marshall Space Flight Center, 26 April 1971
﹝23﹞Calise, A.J., and Leung, M.S.K., “Optimal guidance law development for an advanced launch system,” Final report, Georgia Institute of technology, School of Aerospace Engineering, April 1995
﹝24﹞Bollino, K.P., Oppenheimer, M.W., and Doman, D.B., “Optimal guidance command generation and tracking for reusable launch reentry,” Accession number ADA460810, Defense Technical Information Center (DTIC), June 2006
﹝25﹞Sifer, J.F., Prouty, S.J., and Mark, P.H., “Advanced concepts for launch vehicle control,” Aerospace and Electronic Systems Magazine, IEEE, Vol. 6, Issue 2, February 1991, pp. 23-29
﹝26﹞陳正舜,線性切線導引法則應用之研究,中華科技大學碩士論文,2010。
﹝27﹞黃振洲,線性正切導引法則酬載最大化之研究,中華科技大學碩士論文,2011。
﹝28﹞ 李顯宏,MATLAB 7.X 程式開發與應用技巧,文魁資訊股份有限公司,台北,中華民國,2004
﹝29﹞ 吳駖,MATLAB 程式設計應用實務,文魁資訊股份有限公司,台北,中華民國,2005
﹝30﹞Nguyen X. Vinh, Flight Mechanics of High-Performance Aircraft, Cambridge Aerospace Series 4, Cambridge University Press, Cambridge, U.K., 1993
﹝31﹞ Standard Atmosphere Model, published by NASA, Washington, D.C., USA,
http://www.grc.nasa.gov/WWW/K-12/airplane/gasprop.html
﹝32﹞ M-V Satellite Launch Vehicles, http://www.isas.ac.jp/e/enterp/rockets/vehicles/m-v/config.shtml
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top