跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佩蓉
研究生(外文):Lin, Pei-Rong
論文名稱:基於最小相關LBPH獨立成分影像特徵 之瞌睡辨識系統
論文名稱(外文):Drowsiness Recognition using ICA Feature Vectors Based on Least Correlated LBPH
指導教授:連振昌連振昌引用關係
指導教授(外文):Lien, Cheng-Chang
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:44
中文關鍵詞:瞌睡辨識眼睛狀態眨眼局部二值化圖樣統計圖(LBPH)獨立成分分析支持向量機
外文關鍵詞:drowsiness recognitioneye stateLBPHICAsupport vector machine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
近年來,瞌睡辨識研究廣泛應用於駕駛瞌睡偵測、與遠距教學系統中,而其中眼睛狀態辨識更是瞌睡辨識研究裡穩固的基石。然而,基於視覺影像方法裡,眼睛狀態的特徵是瞌睡辨識中不可或缺的一環,並可概括分為兩大類:一為基於樣板方法、二為基於特徵方法。本論文提出新穎的瞌睡辨識方法解決了現行方法易產生的問題,此方法包含獨創的特徵,最小相關LBPH,接著將此特徵使用獨立成分分析方法獲得低維度的統計獨立性特徵向量,最後將上述的新特徵向量使用支持向量機訓練出一個眼睛狀態分類器。在瞌睡辨識研究中,根據前人所研究的眨眼生理反應,我們設計出四個法則配合前述的眼睛狀態分類器即建構完成瞌睡辨識系統。本瞌睡辨識系統可在兩秒內判定瞌睡與否,辨識正確率98%、每張畫面的眼睛辨識時間需0.08秒。
In recent years, the drowsiness detection is widely applied to the driver alerting or distance learning. The drowsiness recognition system is constructed on the basis of the recognition of eye states. In this thesis, we propose a new image feature called “least correlated LBP histogram (LC-LBPH)” to generate a high discriminate image features for eye states recognition. Then, the method of independent component analysis (ICA) is used to derive the low-dimensional and statistical independent feature vectors. Finally, support vector machines (SVM) is trained to recognize the drowsiness. Furthermore, we design four rules to recognize three eye transition patterns which define the normal (consciousness), drowsiness, and sleeping situations. Experimental results show that our system can recognize the drowsiness with accuracy 98% within 2 seconds. The eye-state recognition rate is about 0.08 seconds per frame.
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Table v
List of Figure vi
Chapter 1 Introduction 1
Chapter 2 Least Correlated LBPH Feature 4
2.1 Face and Eyes Detection 4
2.2 Least Correlated LBPH 5
2.3 Pattern Weighting 10
Chapter 3 Independent Component Analysis (ICA) of LC-LBPH Feature 14
3.1 Introduction of ICA 14
3.2 Reduction of Feature Dimension 14
Chapter 4 Drowsiness Recognition 21
4.1 Support Vector Machine for Eye state Recognition 21
4.2 Drowsiness Recognition System 25
Chapter 5 Experimental Results 28
5.1 Training Data and Test Data 28
5.2 Eye State and Drowsiness Recognition 28
Chapter 6 Conclusion 33
Reference 34

[1] M. J. Flores and J. M. Armingol, “Real-TimeWarning System for Driver Drowsiness Detection Using Visual Information,” Journal of Intelligent and Robotic Systemst, vol. 59, no. 2, pp. 103–125, August 2010.
[2] K. Hwang and C. Yang, “Learner attending auto-monitor in distance learning using image recognition and Bayesian Networks,” Expert Systems with Applications, vol. 36, no. 9, pp. 11461–11469, November 2009.
[3] M. V. M. Yeo, X. Li, K. Shen, and E. P.V. W. Smith, “Can SVM be used for automatic EEG detection of drowsiness during car driving,” Safety Science, vol. 47, no. 1, pp. 115–124, January 2009.
[4] A. Picot, A. Caplier, and S. Charbonnier, “Comparison between EOG and high frame rate camera for drowsiness detection,” Applications of Computer Vision (WACV), pp. 1-6, December 2009.
[5] W. Horng and C. Chen, “A Real-Time Driver Fatigue Detection System Based on Eye Tracking and Dynamic Template Matching,” Tamkang Journal of Science and Engineering, vol. 11, no. 1, pp. 65-72, March 2008.
[6] T. Fernandes, A. F. Henzen, A. F. Charão, F. K. Schneider, H. R. Gamba and P. M. Gewehr, “Image Processing-Based Eyelid State Detection,” Springer Word Congress on Medical Physics and Biomedical Enginering IFMBE Proceedings, vol. 25/5, pp. 145-148, Sep. 2009.
[7] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May 2004.
[8] M. I. Khan and A. B. Mansoor, “Real Time Eyes Tracking and Classification for Driver Fatigue Detection,” Springer International conference on Image Analysis and Recognition, vol. 5112/2008, pp. 729-738, April 2008.
[9] H. A. M. Noor and R. Ibrahim, “Fatigue Detector Using Eyelid Blinking and Mouth Yawning,” Springer Computer Vision and Graphics, vol. 6375/2010, pp. 134-141, September 2010.
[10] E. Vural, M. Çetin, A. Erçil, G. Littlewort, M. Bartlett and J. Movellan, “Machine Learning Systems for Detecting Driver Drowsiness,” Springer In-Vehicle Corpus and Signall Processing for Driver Behavior, pp.97-110, Feb. 2009.
[11] X. Fan, Y. Sun, B. Yin, and X. Guo, “Dynamic Human Fatigue Detection Using Feature-Level Fusion,” ELSEVIER Pattern Recognition Letters, vol. 31, no. 3, pp. 234-243, February 2010.
[12] L. Wiskott, J.-M. Fellous, N. Kuiger, and C. von der Malsburg, “Face recognition by elastic bunch graph matching,” IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775-779, Jul 1997.
[13] Y. Wu, T. Lee, Q. Wu, and H. Liu, “An Eye State Recognition Method for Drowsiness Detection,” IEEE 71st Vehicular Technology Conference, pp. 1-5, June 2010.
[14] C. Xu, Y. Zheng, and Z.Wang, “Eye state detection by boosting local binary patter histogram featus,” 15th IEEE International Conference on Image Processing, pp. 1480 - 1483, Oct. 2008.
[15] H. Wang, L.B. Zhou, and Y. Ying, “A novel approach for real time eye state detection in fatigue awareness system,” IEEE Conference on Robotics Automation and Mechatronics, pp. 528-532, June 2010.
[16] J.Wu and M. M. Trivedi, “Simultaneous Eye Tracking and Blink Detection with Interactive Particle Filters,” EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 2008, pp. 0-17, January 2008.
[17] P. Wang and Q. Ji, “Multi-view face and eye detection using discriminant features,” ELSEVIER Computer Vision and Image Understanding, vol. 105, no. 2, pp. 99-111, February 2007.
[18] W. J. Freed, J. E. Kleinman, C. N. Karson, S. G. Potkin, D. L. Murphy, R. J. Wyatt, “Eye-blink rates and platelet monoamine oxidase activity in chronic schizophrenic patients,” Biological Psychiatry, vol. 15, no. 2, pp. 329-332, Apr. 1980.
[19] B.W. Shahani, “The human blink reflex,” J Neurol Neurosurg Psychiatry, vol. 33, no. 6, pp. 792-800, December 1970.
[20] Intel's open source computer vision library. http://www.intel.com/technology/ computing/opencv/index.htm.
[21] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Transaction on Pattern Analysis and Machine inTelligence, vol. 24, no. 7, pp. 971-987, July 2002.
[22] P. Wang and Q. Ji, “Learning Discriminant Features for Multi-View Face and Eye Detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 373-379, June 2005.
[23] A. Hyvärinen and E. Oja, “Independent Component Analysis:Algorithms and Applications,” Neural Networks, vol. 13, no. 4-5, pp. 411-30, May-Jun 2000.
[24] A. Hyvarinen, “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626-634, May 1999.
[25] The FastICA MATLAB package. (2005, Oct.) Independent Component Analysis (ICA) and Blind Source Separation (BSS). [Online]. http://www.cis.hut.fi/projects/ica/fastica/

[26] C. J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, June 1998.
[27] G. Pan, L. Sun, Z. Wu, and S. Lao, “Eyeblink-based Anti-spoofing in Face Recognition from a Generic Webcamera,” 11th IEEE International Conference on Computer Vision, pp. 1-8, Oct. 2007.
[28] D. J. Hand, “Measuring classifier performance: a coherent alternative to the area under the ROC curve,” Journal of Machine Learning, vol. 77, no. 1, pp. 103-123, March 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top