跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑞陽
研究生(外文):HUNG,JUI-YANG
論文名稱:P型金氧半場效應電晶體整合高介電係數介電層氧化鋯鉿與金屬閘極技術之研究與應用
論文名稱(外文):The Investigation and Application of High-κ Dielectric HfZrOx and Metal Gate P-MOSFET Technology
指導教授:吳建宏吳建宏引用關係
指導教授(外文):C.H.Wu
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:90
中文關鍵詞:閘極介電質鉿為基底金氧半場效電晶體氧化鋯金屬氧化物半導體技術金屬閘極高介電係數
外文關鍵詞:Metal gateHf-based MOSFETsGate dielectricMOS technologyZrO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體元件近年來的迅速發展,金氧半場效電晶體因為元件尺寸的微縮皆遵循著等比例的微縮規範進行,所以其閘極氧化層厚度勢必也要隨著通道尺寸的縮小而相對縮小。但是伴隨而來的高閘極漏電流卻使電晶體的特性變差,並且令元件消耗的功率變大。因此,用高介電係數材料取代傳統介電層是刻不容緩的。雖然高介電係數材料能有效的減少閘極漏電流,但仍有一些相關的問題必須解決。在這幾年學界大量研究中,高介電常數薄膜氧化鉿(HfO2)由於其良好的熱穩定性和高的介電係數,而被視為取代氧化矽作為場效電晶體的閘極氧化層的最佳材料,氧化鉿隨著該薄膜厚度的減少到15奈米,導致電子遷移率(mobility)變得越來越差,固定電荷方面的問題,並且導致臨界電壓的不穩定。由於介電係數的變化跟晶體結構的改變有著極大的關聯,相較於氧化鉿(HfO2),以氧化鋯鉿 (HfZrOx)當作閘極介電層材料則擁有高電導,且改善電荷捕捉的現象使其降低,在電性方面,也擁有較高的驅動電流並可提升介電值的品質和可靠度,如漏電流、磁滯、介面密度和優越的晶圓級厚度均勻性,在經過一連串的負壓測試,如溫度或大偏壓的情況下仍然能夠擁有較長的壽命。在我們的研究中,我們將金屬(Al、Ni)沉積在介電層之上,並製作了金氧半電晶體。為了瞭解其被應用為閘極介電層的特性,將會量測元件參數,閘極漏電流、遷移率和電晶體特性,探討使用了氧化鋯鉿 (HfZrOx)當作閘極介電層材料對於傳統高介電係數介電層帶來的改善。而我們使用的製程方法,可將不同的金屬應用在金氧半電晶體所使用的閘極介電層。
With the rapid development in recent years, semiconductor devices MOS transistor scaling down due to device size ratio of both miniature and follow the specifications, so the gate oxide thickness will inevitably have to reduce as the channel size and relatively narrow . But the attendant while filling high gate leakage current characteristics of transistor variation, and to make the components of power consumption will be great. Thus, high-k dielectrics to replace conventional dielectric layer is urgent. Although utilizing high- dielectrics reduced the gate leakage current effectively, there are still some issues that we have to overcome. In the past few years, hafnium-based high- dielectrics have been identified as promising materials for silicon-oxide replacement due to their excellent thermal stabilities with Si substrate and their high dielectric constants. However, as HfO2 thickness is reduced, the -value decreases to 15 nm. Furthermore, HfO2 suffers from mobility degradation, fixed charge issues, threshold voltage instability, and a  variation dependence on crystal structure. Compare to HfO2, the new HfxZr1-xO2 gate dielectric showed: (1) higher transconductance. (2) less charge trapping, (3) higher drive current, (4) reduced C-V hysteresis, (5) lower interface state density, (6) superior wafer-level thickness uniformity, and (7) longer PBTI lifetime. We gave developed an approach to this high-k dielectric, and deposited metal film: (1) Al, or (2) Ni on Si substrate using E-gun followed by oxidation and annealing. The MOS transistors and capacitor devices with HfZrOx dielectrics were fabricated. To investigate the characteristic of HfZrOx used a gate dielectric, we measured the gate leakage current, mobility and transistor performance. Therefore, using this approach, we can fabricate HfZrOx high-dielectric that is suitable in MOSFETs application.
中文摘要 ……………………………………………………………… i

英文摘要 ……………………………………………………………… ii

致謝 ……………………………………………………………… iii

目錄 ……………………………………………………………… iv

表目錄 ……………………………………………………………… v
圖目錄 ……………………………………………………………… vi
第一章 簡介
1-1 研究背景與動機…………………………………………………… 1
1-2 高介電常數材料的介紹………………………………………… 3
1-3 金屬閘極概述………………………………………………… 5
第二章 基礎的元件物理與製程技術
2-1 金氧半場效電晶體的基礎物理………………………………… 14
2-2 製造科技和實驗工具…………………………………………… 20
第三章 金氧半電容及高介電常數電晶體製作流程
3-1 金氧半電容之製作……………………………………………… 42
3-2 高介電常數之P型金氧半場效電晶體製作……………………… 43
第四章 結果與討論
4-1 MIS結構的電性量測……………………………………………… 62
4-2 金屬閘極的P型金氧半場效薄膜電晶體電性分析…………………63
第五章 結論
5-1 結論……………………………………………………………………75
參考文獻 76

[1] M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs: Physical insight into critical parameters,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 759–768, Apr. 2006.
[2] G. Ribes, J.Mitard, M. Denais, S. Bruyere, F.Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Rel., vol. 5, no. 1, pp. 5–19, Mar. 2005.
[3] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, “Threshold voltage instabilities in high-k gate dielectric stacks,” IEEE Trans. Device Mater. Rel., vol. 5, no. 1, pp. 45–64, Mar. 2005.
[4] M. Gurfinkel, S. Suehle, B. Bernstein, and S. Yoram, “Enhanced gate induced drain leakage current in HfO2 MOSFETs due to remote interface trap-assisted tunneling,” in IEDM Tech. Dig., 2006, pp. 1–4.
[5] R. Ruh, et al., J. Am. Ceram. Soc. 51, p.23 (1968)
[6] D. H. Triyoso and R. I. Hegde, “Impact of Zr addition on properties of atomic layer deposited HfO2,” Appl. Phys. Lett., vol. 88, no. 22, pp. 222901-1–222901-3, 2006.
[7] R. I. Hegde, D. H. Triyoso, P. J. Tobin, S. Kalpat, M. E. Ramon, H.-H. Tseng, J. K. Schaeffer, E. Luckowski, W. J. Taylor, C. C. Capasso, D. C. Gilmer, M. Moosa, A. Haggag, M. Raymond, D. Roan, J. Nguyen, L. B. La, E. Hebert, R. Cotton, X.-D. Wang, S. Zollner, R. Gregory, D. Werho, R. S. Rai, L. Fonseca, M. Stoker, C. Tracy, B. W. Chan, Y. H. Chiu, and B. E. White, Jr., “Microstructure modified HfO2 using Zr addition with TaCy gate for improved device performance and reliability,” in IEDM Tech. Dig., 2005, pp. 39–41.
[8] D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, R. Gregory, X.-D. Wang, M. Canonico, D.
Roan, E. A. Hebert, K. Kim, J. Jiang, R. Rai, V. Kaushik, and S. B. Samavedam, “Characteristics of atomic-layer-deposited thin HfxZr1−xO2 gate dielectrics,” J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 25, no. 3, pp. 845–852, May/Jun. 2007.
[9] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, Jr., “Hafnium zirconate gate dielectric for advanced gate stack applications,” J. Appl. Phys., vol. 101, no. 7, pp. 0741131–0741137, Apr. 2007.
[10] R. I. Hegde, D. H. Triyoso, S. Kalpat, S. B. Samavedam, J. K. Schaeffer, E. Luckowski, W. J. Taylor, C. Capasso, D. C. Gilmer, M. Raymond, D. Roan, J. Nguyen, L. La, E. Hebert, X.-D. Wang, R. Gregory, R. S. Rai, J. Jiang, T. Y. Luo, and B. E. White, Jr., “Optimization of hafnium zirconate (HfZrOx) gate dielectric for device performance and reliability,” in Proc. Int. Conf. Solid State Devices Mater., Yokohama, Japan, 2006, pp. 1098–1099.
[11] G. D. Wilk, R M. Wallace. et. al., “High-k gate dielectrics: current status and materials properties consideration” J. Appl. Phys., Vol. 89, No. 10, pp. 5243, 2001.
[12] E. Josse, T.Skotnicki 1999 Tech. Digest, Int. Electron Device Meet. (Piscataway:
IEEE) pp. 661-664
[13] J. Y.-C. Sun, C. Wong, Y. Taur, C.-H. Hsu, 1989 Dig. Technical Papers, VLSI
Symp. Technology. (Piscataway: IEEE) pp.17-18
[14] I. De, D. Johri, A. Srivastava, C.M. Osburn, 2000 Solid-State Electron. 44 1077–
1080.
[15] J.C. Hu, H. Yang, R. Kraft, A.L.P. Rotondaro, S. Hattangady, W.W. Lee, R.A.
Chapman, C.-P. Chao, A. Chatterjee, M. Hanratty, M. Chen, I.-C. Chen, 1997 Tech.
Dig. Int. Electron Devices Meet. (Piscataway: IEEE) pp. 825– 828.
[16] Y.-S. Suh, G.P. Heuss, J.-H. Lee, V. Misra, 2003 IEEE Electron Device Lett.
24 439– 441.
[17] H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, T. Kunio, 2001 IEEE Trans.
Electron Devices 48 2363– 2369.
[18] B. Tavel, T. Skotnicki, G. Pares, N. Carrie`re, F. Leverd, C. Julien, J. Torres, R.
Pantel, 2001 Tech. Dig. Int. Electron Devices Meet. (Piscataway: IEEE) pp. 825– 828.
[19] W.P. Maszara, Z. Krivokapic, P. King, J.-S. Goo, M.-R. Lin, 2002 Tech. Dig Int.
Electron Devices Meet.. (IEEE, Piscataway) pp. 367– 370.
[20] B.E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”, IEEE Trans. Elec. Dev., vol. ED-27, p. 606, 1980
[21] Fowler R H and Nordheim L 1928 Proc. R. Soc. A 119 173

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top