跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧富瓏
研究生(外文):Fu-Lung Teng
論文名稱:鋁合金蜂巢夾層板承受彎矩負荷下兩階段累積疲勞壽命之實驗與分析
論文名稱(外文):Experimental Analysis on Two-Stage Cumulative Bending Fatigue Life of Aluminum Honeycomb Sandwich Panels
指導教授:吳泓瑜任貽明
指導教授(外文):Wu,Horng-YuJen,Yi-Ming
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:57
中文關鍵詞:鋁合金蜂巢夾層板四點彎矩累積疲勞週次比壓痕破壞
外文關鍵詞:aluminum honeycomb sandwich panelfour-point bendingcumulative fatiguecycle ratioindentation failure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究將針對鋁合金蜂巢夾層板在常溫環境下進行四點彎矩之基本及兩階段累積疲勞試驗,以期能對鋁合金蜂巢夾層板的累積疲勞性質能有更完整的了解。
本研究首先針對鋁合金蜂巢夾層板在常溫下進行四點彎矩靜態基本疲勞試驗,利用其靜態極限強度之75%、70%、65%、60%、55%及50%作為基本疲勞實驗之最大負荷,透過疲勞實驗可得到室溫下之負荷-壽命曲線並觀察其破壞模式。基本疲勞實驗結果顯示:在常溫環境下鋁合金蜂巢夾層板四點彎矩疲勞實驗破壞主因是面板壓痕(indentation)破壞。本研究中的兩階段累積疲勞實驗選擇基本疲勞壽命曲線中,對應疲勞壽命為10萬週次及50萬週次的負荷階分別作為兩階段累積疲勞實驗之負荷階。實驗內容的研究變數包括兩階段負荷階之高低變化與第一階段疲勞實驗之週次比。本研究對於第一階段週次比對累積疲勞行為之影響,以Miner’s rule的理論公式來預測第二階段殘餘壽命。研究結果顯示,兩階段累積疲勞中負荷階由高做到低時,其兩階段週次比和有小於1之趨勢,反之則大於1。這顯示了當試片先受到較低負荷階之疲勞負荷對其疲勞壽命較有助益,反之可能降低此試片之疲勞壽命。由此結果可說明鋁合金蜂巢夾層板在承受兩階段疲勞負荷時存在者與金屬材料相同的負荷順序效應。

Two-stage cumulative bending fatigue behavior of the adhesively joint aluminum honeycomb sandwich panels has been experimentally investigated in this study.The loading levels for the two-stage cumulative fatigue experiments were selected from the fatigue baseline of the same kind of honeycomb sandwich panels. The high and low loading levels of the two stage represent the applied loads corresponding to the fatigue lives of 100,000 and 500,000 cycles, respectively. The loading sequence effect and the cycle ratio of the first level were the variables considered in the experimental program. The experimental results show that the sum of the cycle ratios of the two stage is larger than unity when the loading sequence of the two stage is from low to high, while the sum of the cycle ratios of the two stage is less than unity when the loading sequence of the two stage is high-to-low. The results imply that the loading sequence effect exists in the two stage cumulative fatigue tests for the studied sandwich panels and the Miner’s rule fails to predict the remaining cycle ratio of the second level. The indentation of face sheet is the mail failure mode observed in the cumulative fatigue tests, which is the same as that obtained in the constant-amplitude fatigue tests.
中文摘要...........................................i
英文摘要..........................................ii
誌 謝...........................................iii
目 錄............................................iv
表目錄............................................vi
圖目錄...........................................vii
符號說明..........................................ix
第一章 序論........................................1
1-1 引言........................................1
1-2 研究內容.....................................1
1-3 章節概要.....................................2
第二章 文獻回顧.....................................3
第三章 實驗內容與程序................................6
3-1 研究對象.....................................6
3-2 儀器介紹.....................................7
3-3 實驗步驟與內容................................7
3-3-2 鋁合金蜂巢夾層板基本疲勞實驗..................8
3-3-3 鋁合金蜂巢夾層板兩階段累積疲勞實驗.............8
第四章 結果與討論...................................15
4-1 鋁合金蜂巢夾層板承受四點彎矩靜態實驗結果.........15
4-2 鋁合金蜂巢夾層板承受四點彎矩疲勞實驗結果.........15
4-3 勁度變化量之觀察結果..........................16
4-4 鋁合金蜂巢夾層板兩階段累積疲勞實驗結果...........16
4-5 利用線性疲勞損傷理論Miner’s Rule預測之結果.....17
第五章 結論………………………………………………………………………............55
參考文獻…………………………………………………………………………………..56

1. L. J. Gibson, and M. F. Ashby, “Cellular Solids” Cambridge, 1988.
2. J. M. Albuquerque, M. F. Vaz, and M. A. Fortes, “Effect of Missing Walls on the Compression Behaviour of Honeycombs,” Scripta Materialia, Vol. 41, Issue 2, pp. 167-174, June 1999.
3. W. Becker, “Closed-Form Analysis of the Thickness Effect of Regular Honeycomb Core Material,” Composite Structures, Vol. 48, Issues 1-3, pp. 67-70, January-March 2000.
4. S. D. Pan, L. Z. Wu, Y. G. Sun, Z. G. Zhou, and J. L. Qu, “Longitudinal Shear Strength and Failure Process of Honeycomb Cores,” Composite Structures, Vol. 72, Issue 1, pp. 42-46, January 2006.
5. J. S. Huang, and J. Y. Lin, “Fatigue of Cellular Materials,” Acta Materialia, Vol. 44, Issue 1, pp. 289-296, January 1996.
6. M. Burman, and D. Zenkert, “Fatigue of Foam Core Sandwich Beam-1: Undamaged Specimens,” International Journal of Fatigue, Vol. 19, Issue 7, pp. 551-561, October 1997.
7. M. Burman, and D. Zenkert, “Fatigue of Foam Core Sandwich Beam-2: Effect of Initial Damage,” International Journal of Fatigue, Vol. 19, Issue 7, pp. 563-578, October 1997.
8. H. Zhao, and G. Gary, “Crushing Behaviour of Aluminum Honeycombs under Impact Loading,” International Journal of Impact Engineering, Vol. 21, Issue 10, pp. 827-836, November 1998.
9. A. S. Thomson, M. Z. Shah Khan, and A. P. Mouritz, “Shear Properties of a Sandwich Composite Containing Defects, ” Composite Structures,Vol. 42, Issue2, pp. 107-118, June 1998.
10. F. Meraghni, F. Desrumaux, and M. L. Benzeggagh, “Mechanical Behavior of Cellular Core for Structural Sandwich Panels,” Composites Part A: Applied Science and Manufacturing, Vol. 30, Issue 6, pp. 767-779, June 1999.
11. J. K. Paik, A. K. Thayamball, and G. S. Kim, “The Strength Characteristics of Aluminum Honeycomb Sandwich Panels,” Thin-Walled Structures, Vol. 35, Issue3, pp. 205-231, November 1999.
12. S. M. Lee, and T. K. Tsotsis, “Indentation Failure Behavior of Honeycomb Sandwich Panels,” Composites Science and Technology, Vol. 60, Issue8, pp. 1147-1159, June 2000.
13. J. S. Huang, and S. Y. Liu, “Fatigue of Honeycombs Under In-Plane Multiaxial Loads,” Materials Science and Engineering A, Vol. 308, Issue 1-2, pp. 45-52, June 2001.
14. S. Belouettar, A . Abbadi, Z . Azari, R . Beloettar, and P .Freres, “Experimental Investigation of Static and Fatigue Behaviour of Composites Honeycomb Materials Using four Point Bending tests,” Composite Structures, Vol. 87, Issue 3, pp. 265-273,February 2009.
15. A. Petras, and M. P. F. Sutcliffe, “Failure Mode Maps for Honeycomb Sandwich Panels,” Composite Structures, Vol. 44, Issue 4, pp. 237-252, April 1999.
16. A. Ural, A. T. Zehnder, and A. R. Ingraffea, “Fracture Mechanics Approach to Face Sheet Delamination in Honeycomb: Measurement of Energy Release Rate of the Adhesive Bond,” Engineering Fracture Mechanics, Vol. 70, Issue 1, pp. 93-103, January 2003.
17. M. Doyoyo, and D. Mohr, “Microstructural Response of Aluminum Honeycomb to Combined Out-of-Plane Loading,” Mechanics of Materials, Vol. 35, Issue 9, pp. 865-876, September 2003.
18. N. Kulkarni, H. Mahfuz, S. Jeelani, and L. A. Carlsson, “Fatigue Crack Growth and Life Prediction of Foam Core Sandwich Composites Under Flexural Loading,” Composite Structures, Vol. 59, Issue 4, pp. 499-505, March 2003.
19. G. Belingardi, P. Martella, L. Peroni, “Fatigue Analysis of Honeycomb composite Sandwich Beams,” Composites Part A: Applied Science and Manufacturing, Vol. 38 , Issue 4 , pp. 1183-1191, April 2007.
20. ASTM, “Flexure Test of Flat Sandwich Constructions,” C393-62, Annual Book of ASTM Standards, 1980.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top