(35.175.212.130) 您好!臺灣時間:2021/05/15 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李育宏
研究生(外文):Lee, Yuhung
論文名稱:應用分子生物技術檢測豬糞尿廢水厭氧共消化產氫菌之研究
論文名稱(外文):Molecular Identification on Hydrogen Production Microbial Community in Anaerobic Swine Wastewater and Sludge Co-digester
指導教授:林信一林信一引用關係
指導教授(外文):Li,Shieyi
口試委員:吳哲宏許鴻猷
口試委員(外文):Wu,ChehungShu,Hungyu
口試日期:2011-06-15
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:豬糞尿廢水厭氧共消化基因轉殖聚合酵素鏈鎖反應完全攪拌連續流反應槽
外文關鍵詞:Swine WastewaterAnaerobic Co-DigestionClonePCRContinuously Stirred Tank Reactor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部分污泥樣本來自生活污水廠污泥和養豬業廢棄糞尿,進行加酸和無加酸前處理,比較單相式與酸前處理兩相式厭氧消化,以探討在加酸處理上是否有助加速水解提高甲烷化速率和污泥消化減量之效益。第二部分(1) 加酸和無加酸處理豬糞尿厭氧消化污泥(2)有加酸和無酸處理生活污水廠污泥和豬糞尿厭氧共消化污泥(3)加酸處理污水廠和豬糞尿兩相式厭氧共消化污泥,以16S rRNA 基因為基礎來探討,有加酸和無加酸處理、不同操作因子之微生物菌群種類,利用PCR增加大量的16S rRNA基因,以基因轉殖技術,將細胞插入細菌質體,完成轉殖,檢測目標樣本菌種,以委外定序菌種,比較各微生物之間相似與差別。
進流污泥TS濃度控制15,000 mg/l時,兩相式厭氧共消化實驗,DCOD和TVS消化率為70%、40%以上,109 ml CH4/g TCODremoved,比無酸處理單相式的DCOD和TVS高於40%、10%,比有酸處理單相式的DCOD和TVS高於30%、5%以上,加酸兩相式反應實驗產能都比單相式實驗高出30%以上。
在微生物相的部分共分六種污泥(1)加酸處理豬糞尿、(2)無加酸豬糞尿、 (3)加酸處理生活污水廠污泥和豬糞尿、(4)無加酸生活污水廠污泥和豬糞尿、(5) 加酸處理生活污水廠污泥和豬糞尿兩相式之酸化槽污泥、(6)加酸處理生活污水廠污泥和豬糞尿兩相式之甲烷槽污泥,在觀察結果以微生物相複雜,原因是本研究以實場的模式進行實驗所以在微生物相的方面差異會有所不同,結果觀察到以豬糞尿進行厭氧消化,優勢菌為Arcobacter spp.、Rikenella spp.、Sulfurovum spp.,在兩相式厭氧實驗中酸化槽和甲烷化槽,以酸化槽優勢菌為Castellaniella spp.、Arcobacter spp.、Escherichia/Shigella spp,甲烷化槽優勢菌是Rikenella spp.。

The sludge samples are from sewage sludge and swine industry with treatment to compare single-phase to two-stages-reactors in anaerobic co-digestion for discussion of whether acid can helpful to accelerate the improve methane formation and reduce sludge digestion efficiency.
There are (1) the swine waste anaerobic sludge acid added and without acid addition treatment (2) acid and acid-free treatments of living sewage sludge and swine manure anaerobic (3) acid added treatment of Two-Stages Process in Anaerobic sludge from living sewage sludge and swine sludge for discussion of the acid added and acid-free treatment of microbial flora of different types of operating factors and a number of increased DNA by the use of PCR were planted cells into the bacterial DNA by genetic screening technology to complete the transformation and detect target bacteria samples for outsourcing sequencing strain and comparison of the similarities and differences between the made micro-organisms based on 16S rRNA gene.
Once the inlet sludge TS concentration is controlled at 15,000 mg/l, in the anaerobic co-digestion experiments, DCOD and TVS digestibility are 70%, 40% or more, 109 ml CH4/g TCODremoved, which is higher than DCOD and TVS 40% and 10% of the acid-free One-Stages Process treatment. And it’s 30% and 5% higher than acid One-Stages-Reactors DCOD and TVS. The acid Two-Stages Process experiment has the result 30% higher than One-Stages Process experiment.
There are six kinds of sludge dominant bacteria divided, (1) acid added swine acid sludge (2) acid-free swine sludge (3) acid added sewage plant sludge and pig manure (4) without the addition of acid sewage sludge and swine sludge (5) acid added treatment of living sewage and swine Two-Stages Process acetogenesis reactor sludge and (6) acid added treatment of living sewage and swine Two-Stages Process methanogenesis reactor sludge. The revealed complex microbes, because the real field experiments in this study caused the difference in micro aspects. It can also be leaned that the results observed in the anaerobic digestion of swine sludge has benefit bacteria of Arcobacter spp., Rikenella spp. and Sulfurovum spp. It can also be leaned that the results observed in the anaerobic digestion of acetogenesis reactor has benefit bacteria of Castellaniella spp.、Arcobacter spp. and Escherichia/Shigella spp.. It can also be leaned that the results observed in the anaerobic digestion of a methanogenesis reactor has bacteria of Rikenella spp..

致謝 i
摘要 ii
Abstract iii
表目錄 viii
第一章 前言 - 1 -
1.1研究緣起 - 1 -
1.2研究目的 - 1 -
第二章 文獻回顧 - 3 -
2.1污泥厭氧共消化作用 - 3 -
2.1.1厭氧微生物之分解作用 - 3 -
2.1.2厭氣處理程序之特性 - 4 -
2.1.3厭氧消化 - 4 -
2.1.4厭氧消化處理技術 - 5 -
2.1.5厭氧消化之影響因素 - 9 -
2.1.6厭氧微生物 - 11 -
2.2分子生物檢測技術 - 13 -
2.2.1 DNA萃取技術 - 14 -
2.2.2聚合酵素鏈鎖反應(PCR) - 14 -
2.2.3 DNA定序 - 15 -
第三章 研究方法與材料 - 16 -
3.1研究方法 - 16 -
3.1.1連續流厭氧共消化實驗流程 - 17 -
3.1.2 厭氧微生物之分子生物實驗流程 - 18 -
3.2研究材料 - 19 -
3.3研究步驟 - 19 -
3.3.1批次式生活污水廠污泥和豬糞尿厭氧消化 - 19 -
3.3.2 批次式厭氧消化實驗 - 20 -
3.3.3單相式厭氧共消化實驗 - 22 -
3.3.4生活污水廠和豬糞尿酸前處理之兩相式厭氧共消化實驗 - 24 -
3.4 分子生物實驗方法 - 26 -
3.4.1 DNA萃取 - 26 -
3.4.2 PCR - 26 -
3.4.3基因選殖 - 26 -
3.4.4 DNA定序與親緣關係比對 - 28 -
3.4.5 厭氧消化實驗儀器 - 28 -
3.4.6分子生物實驗器材 - 31 -
第四章 結果與討論 - 32 -
4.1生活污水廠污泥與豬糞尿特性 - 32 -
4.2生活污水廠和豬糞尿酸前處理之兩相式厭氧共消化實驗 - 34 -
4.2.1厭氧消化槽之TS和TVS消化率 - 37 -
4.2.2反應槽厭氧消化TCOD和DCOD消化率 - 41 -
4.2.3單相式厭氧共消化實驗和兩相式厭氧共消化實驗氣體濃度和甲烷產量…. - 45 -
4.3批次式豬糞尿厭氧消化實驗 - 48 -
4.3.1加酸處理豬糞尿和無加酸處理豬糞尿特性分析 - 48 -
4.3.2微生物分析。 - 50 -
4.4生活污水廠污泥和豬糞尿厭氧共消化實驗 - 53 -
4.4.1 厭氧共消化程度 - 54 -
4.2.4 污泥菌相比較 - 56 -
4.3兩相式實驗酸化槽與甲烷槽微生物分析 - 59 -
第五章結論與建議 - 62 -
5.1結論 - 62 -
5.2建議 - 64 -
參考文獻 - 65 -
附錄 - 71 -



參考文獻
Anne, M. S. Aaron, D. P. Jonathan, D. I. Mostafa S. E. Fares, Z. N. Bruce, A. R. David, C. W. and Lee, R. K. “Identification and Isolation of a Castellaniella Species Important during Biostimulation of an Acidic Nitrate- and Uranium-Contaminated Aquifer,” Applied and Environment Microbiology., pp. 4892-4904(2007).
Burgmann, H. Pesaro, M. Widmer, F. and Zeyer, J. ”A Strategy forOptimizing Quality and Quantity of DNA Extracted from Soil,” Journal of Microbiological Methods, 45, pp.7-20 (2001).
Bryant, M.P. Wolin E. A. Wolin, M. J. and Wolfe R. S.,“Methanobacilus
omelianskii, a symbiotic association of two species of bacteria,”Arch. Microbiol. Vol. 59, pp.20-31 ( 1967 ).
Chance, V. L. H. Aldrich, C. and Lindner. A. S. L. “Isolation and Characterization of a Bacterium Capable of Removing Taste- and Odor-causing 2-methylisoborneol from Water,” Water Research. , 38, pp.4135-4142, (2004).
Dipti, W. Pitta William, E. Pinchak Scott, E. “Rumen Bacterial Diversity Dynamics Associated with Changing from Bermudagrass Hay to Grazed Winter Wheat Diets,” Microb Ecol. ,59, pp. 511–522,(2010)
Eriksson, S. Hallbeck, L. and Ankner, T. Abrahamsson, K. and Sjoling, A. “Indicators of Petroleum Hydrocarbon Biodegradation in Anaerobic Granitic Groundwater,” Geomicrobiology Joumal. , 23, pp.45-58(2006).
Gaudy, A. F. and Gaudy, E. T. Microbiology for environment scientists and
engineers, Mc-Graw Hill. (1980).
Ghosh, S. Conrad, J. R. and Klass, D. L.“Anaerobic acidogensis of waste water sludge,”Journal water Pollution control Federation. , 47, pp. 30-45 (1975).
Gottschalk, G. “Bacterial metabolism,”Spring-Verlag. New York pp.208-282 (1986).
Gachet, E. Martin G.G,Vigneau F.“Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available,” Trends in Food Science and Technology. , 9 , pp.380-388 (1999)
Gray, C.T. and Gest, H. “Biological formation of molecular hydrogen,” Science. ,148, pp.186 (1965).
Groot, A. D. “Bio-methane & biohydrogen status and perspectivesof biological methane and hydrogen production,”Dutch biological hydrogen foundation, pp.40(2003).
Ingranham, J. L.“Growth of the bacteria cell,” Sunderland Massachusetts. Sinauer, pp12-107 (1983).
Kampfer, P. Denger, A. Cook, A. M. Lee, S.-T. Jacker, U. Denner, E. B. and Busse, H.-J.“Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov.,” International Journal of Systematic and Evolutionary Microbiology. , 56, pp.815-819 (2006).
Kedziorek, M. A. M. Dupuy, A. Bourg, A. C. M. and Compere, F. “LeaLeaching of Cd and Pb from a polluted soil during the percolation of EDTA: Laboratory column experiments modeled with a non-equilibrium solubilization step.” Environ. Sci. Technol (1983).
Lane, D. J. B. Pace, G. J. Olsen, D.A. Stahl, M. L. Sogin, and N. R. Pace. Rapid
“Determination of 16S ribosomal RNA sequences for Phylogenetic Analysis, Proc,” Natl. Acad. Sci. USA., pp.82 (1985).
Masse, D. I. and Drosete R. L. “Comprehensive Model of Anaerobic Digestion
of swine Manure Slurry in a Sequencing Batch Reactor, ” Wat. Res. ,34(12), pp. 3087-3106 (2000).
McCartney, D. M. Oleszkiewicz, J. A. “Sulfide inhibition of anaerobicdegradation of lactate and acetate,” Water Res. ,25 (2), pp.203-209 (1991).
McCarty P.L.,“Anaerobic waste treatment fundamentals-part two,environmental requirements and control,”. Public Works. ,95(10), pp.123-126 (1964).
Miller, D. N. Bryant, J. E. Madsen, E. L. and Ghiorse, W. C. “Evaluation and
Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples,” Applied and Environmental Microbiology , 65, pp.4715-4724 (1999).
Mizuno, O. Dinsdale, R. Hawkes, F. R. Hawkes, D.L. Noike, T. “Enhancement of hydrogen production from glucose by nitrogen gas Sparging,”Bioresource Technol. ,73, pp.59-65 (2000).
Mullis, K. F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich. “Specific Enzymatic Amplification of DNA in Vitro: the Polymerase Chain Reaction,” Cold Spring Harbor Symp. Quant. Biol. , 51, pp.263-273 (1986).
Nandi, R. and Sengupta, S. “Microbial Production of Hydrogen:An Overview,”Microbiology. ,24(1), pp. 61-84( 1998 ).
Naoum, C. Fatta D. Haralambous, K. J. and Maria, L. “Removal of heavy metals
from sewage sludge by acid treatment,” J. Environ. Sci. Health. ,36(5), pp. 873-881(2001).
Olsen, G. J. S. J. Lane, Giovannoni, N. R. Pace and D. A.“Stahl. Microbial Ecology and Evolution: a ribosomal RNA Approach,”.Microbiol. , pp. 40 (1987).
Owen, W.F. Stuckey, D.C. Healy Jr., J.B. Young , L.Y. “McCarty Bioassay for monitoring biochemical methane potential and anaerobic toxicity,”Water Research. , 13, pp. 485-492(1979).
Pecharaply, A. Parkpian, P. Annachhatre, A. and Jugsujinda, A.“Influence of
anaerobic co-digestion of sewage and brewery sludges on biogas production and sludge quality,” Environmental Science and Health. ,42, pp.911-923 (2007).
Schink, B. Zehnder, A.J.B.ed, John Wiley & Sons, “Principles and limits of anaerobic degradation,” Biological of Anaerobic Microorganisms, Singapore. , pp. 771-864 (1987).
Schink, B. and Friedrich, M. “Energetics of syntrophic fatty acid oxidation, FEMS Microbiology Reviews,”pp.15-85 (1994).
Seyoum, Leta., Fassil, Assefa., Gunnel, Dalhammar. “Enhancing biological nitrogen removal from tannery effluent by using the efficient Brachymonas denitrificans in pilot plant operations Seyoum,” World Journal of Microbiology & Biotechnology. , 21,pp. 545–552(2005).
Snaidr, J. Amann, R., Huber, I. Ludwig, W. and Schleifer, k.“Phylogenetic Analysis and In Situ Identification of Bacteria in Activated Sludge,” Applied and Environmental Microbiology. , pp. 2884–2896(1997).
Speece, R.E. “The effect of short term temperature variationo on methane
Production,”Jour. WPCF. , l(42), No.11 (1970).
Thomas, D. Brock, Michael, T. Madigan, Biology of Microorganisms, University of Wisconsin /Southern Illinois University, sixth Edition, pp. 636-639.
Willam, H. L. and Marvin, P. B. “Peptostreptococcus productus Strain That Grows Rapidly with CO as the Energy Source,”Applied and Environmental Microbiology. ,pp.961-964,(1984).
Woese, C. R. “Bacterial Evolution,”Microbiol. , 51, pp.221-271, (1987).
Van Haandel, A.C. and Lettinga, G. “Anaerobic Sewage Treatment,”Wiley. ,England (1994).
Zehnder, A. J. B. and Koch, M. E. Themodynamic and kinetic interactions of the final Steps in amaerobic digestion. In “Anerobic Waste Water Treatment”, ed. W.J.
Van den Brink. TNO Coporate Communication Department, The Hague. pp. 86-96 (1983).
Yamamoto, M. Shigeru Shimamura, S. S. and Takai, K. and Hori koshi, K.“Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1emi_2155 11,” Environmental Microbiology. ,12(5), pp.1144-1153 (2010).
Zehnder, A. J. B., Biology of anaerobic microorganisms , John Wiley & Sons,
New York (1988,).
王創正,廢棄有機污泥以連續批次厭氧消化產氫及甲烷之研究,長榮大學
職業安全與衛生研究所碩士論文(2006)。
白明德,厭氧生物產氫機制與程序操作策略之研究,國立成功大學環境工程研究所 (1999)。
江易錞,酸前處理隊豬糞尿與污泥厭氧共消化產能之研究,長榮大學職業安全與衛生研究所碩士論文 (2011)
李篤中、朱靜平,污泥處置策略與永續利用,化工 49(2 ),pp.32-41 (2002)。
林秋裕, 環境工程微生物學,二版,國章出版社,台中 (1997)。
林秋裕、周家弘,ASBR法應用於懸浮性厭氧微生物產氫之研究,第25屆廢水處理研究會論文集,pp.357-361 (2000)。
卓聖育,廢棄活性污泥與廚餘厭氧共消化減量及能源回收之研究,長榮大
學職業安全與衛生研究所碩士論文 (2007)。
胡紹華,重金屬汙泥處理技術探討,資源與環境學術研討會,pp.355-367 (2005)。
徐敬衡,生物產能甲烷氣之研究與發展發展,化工 57(5),pp.122.131 (2004)。
施翠盈,本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學研究所碩士論文 (2002)。
莊蕙萍,三段式流體化床生物程序處理PAN 廢水之程序功能評估與微生
物族群動態變化之探討, 國立成功大學環境工程研究所碩士論文 (2004)。
陳裕星、沈勳、曾勝雄, 以分子標記鑑定食用紅甘蔗品系初探,臺中區農業改良場研究彙報,1985,17-24 (2002)。
陳昀志,應用分子生物技術於污泥減量之厭氧消化系統菌種檢測研究,
長榮大學職業安全與衛生研究所碩士論文 (2010)。
黃俊霖,以分子生物技術探討厭氧生物產氫程序之菌群結構,國立中央大
學環境工程研究所碩士論文 (2001)。
黃俊霖, 應用批次與連續流試驗探討實驗室分離之除臭菌株對水庫中臭
味物質降解之能力,國立中央大學環境工程研究所碩士論文 (2006)。
游勝傑, 併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,國立
中央大學環境工程研究所碩士論文 (2001)。
蔡孟潔、周楚洋,豬糞尿水之生物去氮除磷,農業機械學刊14(4),pp.1-12 (2005)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top