跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖其
研究生(外文):Sheng-Chi Wang
論文名稱:化學修飾法增強大麥渣吸附重金屬離子能力
論文名稱(外文):Enhancement of Heavy Metal Ions Adsorption Capaticy with Chemical Modification of Extracted Barley Residual
指導教授:蔡利局
指導教授(外文):Li-chu Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:131
中文關鍵詞:chemical modificationadsorbentbarley residualheavy metal
外文關鍵詞:吸附劑大麥渣重&#63754化學修飾作用
相關次數:
  • 被引用被引用:1
  • 點閱點閱:560
  • 評分評分:
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:0
為提升大麥萃取殘渣吸附去除水中重金屬離子的商品應用價值及效能,本研究以四種化學修飾法(包括磷酸鹽修飾法、檸檬酸修飾法、硫代硫酸鈉修飾法及甲醛修飾法),配合硫脲架橋作用,修飾大麥萃取殘渣製成九種吸附劑,進行重金屬離子(Cu(Ⅱ)、Pb(Ⅱ)、及Zn(Ⅱ))批次吸附試驗,可同時處理食品加工廢棄物和移除廢水中重金屬離子,有益於提高廢棄物減量及再利用價值,更有助於永續環境利用。本研究探討影響吸附劑吸附重金屬離子之參數:如pH值、接觸時間、反應溫度、重金屬離子種類、混合重金屬離子之相互吸附競爭、及重金屬離子濃度等,並以等溫吸附平衡方程式、吸附動力學及吸附熱力學平衡模式來探討吸附效能。
比較各種經修飾化吸附劑對Cu(Ⅱ)、Pb(Ⅱ)、及Zn(Ⅱ)於最佳操作條件下吸附量為10.92、10.02、及9.21 mg/g;最差吸附量為3.08、4.07、及5.02 mg/g;最佳吸附pH為4.5~7.0。吸附反應穩定平衡時間約為60分鐘。以 Freundlich、Langmuir及Dubinin–Radushkevich equation三種等溫吸附平衡模式套用於等溫吸附平衡實驗數據,可計算各種吸附劑等溫吸附平衡常數及判斷屬於物理性或化學性吸附行為。以三種吸附動力模式( Pseudo first–order rate、Pseudo second–order rate 及 Intraparticle diffusion equation)評估發現Pseudo second–order rate equation 最適於描述修飾化吸附劑之吸附動力行為。由吸附熱力學特性參數(標準自由能(△Go)、焓值(△Ho)、及熵值(△So)變化)顯示吸附反應溫度從 15℃增至 70℃時,吸附Cu(Ⅱ)、Pb(Ⅱ)、及Zn(Ⅱ)反應主要為吸熱之自發性反應。在混合重金屬離子溶液中,受三種重金屬離子相互競爭吸附位置影響,吸附動力行為亦適合以Pseudo second–order rate equation描述,吸附熱力學特性亦主要為吸熱之自發性反應。
Four chemical modification methods were used to modify barley residual into adsorbent, including phosphorylation, sulfonation, sodium thiosulfate, citric acid, and formaldehyde modification. Those were used to increase the adsorption capacity of heavy metals compared with bare barley residual. The solid waste reduction and reuse at food processing plant could be promoted and the heavy metal ions could be removed from waste water in the same time. It is helpful and sustainable utilization of environmental resources. The adsorption capacity of heavy metal ions (Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ)) onto adsorbents was characterized by pH, contact time, contact temperature and heavy metal ions. The adsorption experimental data also evaluated with isothermal adsorption, adsorption dynamic and adsorption kinetic models.
The highest adsorption capacity of Cu(Ⅱ), Pb(Ⅱ)and Zn(Ⅱ) onto bare and modified adsorbents were 10.92, 10.02, and 9.21 mg/g, respectively. The lowest adsorption capacity for Cu(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) were 3.08, 4.07 and 5.02 mg/g, respectively. The optimum operation pH ranged between 4.5~7.0. 60 minutes was needed to reach equilibrium state of adsorption.
Three isothermal adsorption equations, Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) were used to evaluate the isothermal adsorption constants from experimental data and to judge the chemical or physical adsorption. The pseudo-second order rate equation fitted excellently the description of dynamic adsorption behavior of heavy metal ions (Cu(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ)) onto adsorbents than the pseudo first-order rate, and intraparticle diffusion equation. The variations of thermodynamic parameters (free energy change (ΔG0), enthalpy change (ΔH0), entropy change (ΔS0)) indicated that the adsorption of Lead (II), Zinc (II) and Copper (II) was primarily endothermic process and the adsorption capacity increase with increasing temperature from 15 to 70 ℃.
Under the competition of other heavy metals onto the adsorptive sites in adsorbents, the adsorption behavior of heavy metal ion also fitted excellently the pseudo-second order rate equation and the calculated thermodynamic constants also indicated primarily the endothermic and spontaneous adsorption process.
圖目錄
中文摘要
Abstract
第一章 前言
1.1 研究緣由
1.2 研究目的
第二章 文獻回顧
2.1 重金屬污染控制的重要性
2.2 重金屬去除技術
2.2.1 傳統重金屬去除技術
2.2.2 有機物鍵結去除水中重金屬離子之可行性
2.2.3 生物性吸附劑介紹
2.2.4 影響吸附能力因子
2.3國內資源再生技術相關研究
2.4 化學修飾法原理
2.4.1硫脲架橋作用原理
2.4.2 檸檬酸修飾法原理
2.4.3 硫代硫酸鈉修飾處理法原理
2.4.4 甲醛修飾處理法原理
2.5 吸附理論
2.5.1 物理吸附
2.5.2 化學吸附
2.5.3 離子吸附
第三章 實驗材料與方法
3.1實驗流程
3.2 實驗設備
3.3 實驗材料及藥品
3.4 實驗材料
3.4.1 樣品前處理步驟
3.4.2 製備重金屬離子溶液
3.4.3 以化學修飾法製備吸附劑步驟
3.5 實驗分析方法
3.6 實驗步驟
3.7 等溫吸附模式計算
3.7.1 Freundlich 等溫吸附理論
3.7.2 Langmuir 等溫吸附理論
3.7.3 Dubinin-Radushkevich 方程式
3.8吸附動力學模式
3.8.1 Pseudo-first order rate equation
3.8.2 Pseudo-second order rate equation
3.8.3 Intraparticle diffusion equation
3.9吸附熱力學模式
第四章 結果與討論
4.1修飾化實驗最佳固液比
4.2修飾化吸附劑比表面積
4.3修飾化吸附劑在不同pH吸附效果
4.3.1修飾化吸附劑在不同pH對Cu(Ⅱ)吸附
4.3.2修飾化吸附劑在不同pH對Pb(Ⅱ)吸附
4.3.3修飾化吸附劑在不同pH對Zn(Ⅱ)吸附
4.3.4 比較修飾化吸附劑在不同pH吸附不同重金屬離子
4.4修飾化吸附劑之吸附平衡試驗
4.4.1 修飾化吸附劑對單一金屬溶液Cu(Ⅱ)之飽和吸附容量比較
4.4.2 修飾化吸附劑對單一金屬溶液Pb(Ⅱ)之飽和吸附容量比較
4.4.3 修飾化吸附劑對單一金屬溶液Zn(Ⅱ)之飽和吸附容量比較
4.4.4 混合型重金屬離子與修飾化吸附劑之競爭吸附平衡試驗
4.5 修飾化吸附劑對單一金屬及混合金屬溶液之等溫吸附平衡模式
4.5.1修飾化吸附劑對單一種重金屬溶液等溫吸附平衡模式
4.5.1.1 修飾化吸附劑對單一金屬溶液Cu(Ⅱ)之等溫吸附平衡曲線
4.5.1.2 修飾化吸附劑對單一金屬溶液Pb(Ⅱ)之等溫吸附平衡曲線
4.5.1.3 修飾化吸附劑對單一金屬溶液Zn(Ⅱ)之等溫吸附平衡曲線
4.5.2混合型重金屬離子競爭下修飾化吸附劑之等溫吸附平衡試驗
4.5.2.1 吸附競爭下修飾化吸附劑對Cu(Ⅱ)之等溫吸附平衡曲線
4.5.2.2 吸附競爭下修飾化吸附劑對Pb(Ⅱ)之等溫吸附平衡曲線
4.5.2.3 吸附競爭下修飾化吸附劑對Zn(Ⅱ)之等溫吸附平衡曲線
4.6 修飾化吸附劑對單一金屬及混合金屬溶液之吸附動力學
4.6.1修飾化吸附劑對單一金屬溶液之吸附動力學
4.6.2修飾化吸附劑對混合金屬溶液之吸附動力學
4.7 修飾化吸附劑對單一金屬及混合金屬溶液之吸附熱力學
4.7.1 修飾化吸附劑對單一金屬溶液之吸附熱力學
4.7.2 修飾化吸附劑對混合金屬溶液之吸附熱力學
第五章 結論與建議
5.1結論
5.2建議
參考文獻
1. Patterson J.W., Gasca E., Wang Y. (1994). Optimization for reduction/precipitation treatment of hexavalent chromium. Water Science and Technology, 29(9), 275-284.
2. Sar P., D''souza S.F. (2001). Biosorptive uranium uptake by a pseudomonas strain: characterization and equilibrium studies. Journal of Chemical Technology and Biotechnology, 76(12), 1286-1294.
3. Yu Q., Matheickal J., Yin P., Kaewsarn P. (1999). Heavy metal uptake capacities of common marine algal biomass. Water Research, 33(6), 1534-1537.
4. Babel S., Kurniawan T.A. (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, 951-967.
5. Daifullah A.A.M., Girgis B.S., Gad H.M.H. (2003). Utilization of agro-residues (rice husk) in small waste water treatment plans. Materials Letters, 57, 1723-1731.
6. Gardea-torresdey J.L., Tiemann K.J., Armendariz V., Bess-oberto L., Chianelli R.R., Rios J., Parsons J.G.., Gamez G. (2000). Characterization of Cr (VI) binding and reduction to Cr (III) by the agricultural byproducts of Avena monida (Oat) biomass. Journal of hazardous materials, B 80, 175-188.
7. Horsfall M. Jr., Abia A.A. (2003). Sorption of cadmium (II) and zinc (II) ions from aqueous solution by cassava waste biomass (Manihot sculenta Cranz). Water Research, 37, 4913-4923.
8. Ishikawa S. I., Suyama K., Arihara K., Itoh M. (2002). Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresource Technology, 81, 201-206.
9. Kawamura Y., Mitsuhashi M., Yoshida H., Tanibe H. (1993). Adsorption of metal ions on polyaminated highly porous chitosan chelating resin. Industrial Engineering and Chemical Research, 32, 386-391.
10. Lister S.K., Line M.A. (2001). Potential utilization of sewage sludge and paper mill waste for biosorption of metals from polluted waterways. Bioresource Technology, 79, 35-39.
11. Ng J.C.Y., Cheung W.H., Mckay G. (2002). Equilibrium studies of the sorption of Cu(II) ions onto chitosan. Colloid and Interface Science, 255(1), 64-74.
12. Palma G., Freer J., Baeza J. (2003). Removal of metal ions by modified Pinus radiate bark and tannins from water solutions. Water Research, 37, 4974-4980.
13. Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469-2479.
14. Harter R.D. (1983). Effect of soil pH on adsorption of lead Lead, Copper, Zinc, and Nickel. Soil Science Society of America, 47, 47-51.
15. Suzuki Y., Kametani T., Maruyama T. (2005). Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 39(9), 1803-1808.
16. 李明霖、鄭大偉(2005),「無機聚合物吸附重金屬之研究」,資源與環境學術研討會,花蓮。
17. Goel J., Kadirvelu K., C. Rajagopal, Garg V.K. (2005). Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. Hazardous Materials, 125(1-3), 211-220.
18. Çay S., Uyanık A., Özaşık A. (2004). Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Separation and Purification Technology, 38(3), 273-280.
19. Friberg L., Nordberg G.F., Vouk V.B. (2002). Handbook on the Toxicology of Metals. Elsevier, Amsterdam, 748, 1979 Modeling the adsorption of metal ions(Cu2+,Ni2+,Pb2+) onto ACCs using surface complexation models. Applied Surface Science, 196(1-4), 356-365.
20. Faur-Brasquet C., Reddad Z., Kadirvelu K., Cloirec P.L. (2002). Modeling the adsorption of metal ions(Cu2+,Ni2+,Pb2+) onto ACCs using surface complexation models. Applied Surface Science, 196(1-4), 356-365.
21. 中華民國行政院環境保護署(2001)。「地下水污染管制標準」 http://www.epa.gov.tw/。
22. 中華民國行政院環境保護署(2006)。「95 年度土壤及地下水污染整治年報」 第五章。
23. Yu K.C., Tsai L.J., Chang S.H., Ho S.T. (2001). Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Research, 35(10), 2417-2428.
24. Tsai L.J., Yu K.C., Chang J.S., Ho S.T. (1998). Fractionation of heavy metals in sediment cores from the Ell-ren River, Taiwan. Water Science and Technology, 37(6-7), 217-224.
25. Christl I., Kretzschmar R. (2001). Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. proton binding . Environment Science and Technology, 35, 2505-2511.
26. Christl I., Milne C.J., Kinniburgh D.G., R. Kretzchmar (2001). Relating ion binding fulvic and humic acids to chemical composition and molecular size. 2. metal binding. Environment Science and Technology, 35, 2512-2517.
27. Greger M., Kautsky L., Sandberg T. (1995). A tentative model of cd uptake in potamogeton pectinatus in relation to salinity. Environmental and Experimental Botany, 35(2), 215-225.
28. Veglio F., Beolchini F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44(3), 301-316.
29. Volesky B. (2001).Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203-216.
30. Bayramoglu G., Denizli A., Bektas S., Arica M.Y. (2002). Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchemical, 72(1), 63-76.
31. Veglio F., Beolchini F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44(3), 301-316.
32. Roy D., Greenlaw P.N., Shane B.S. (1993). Adsorption of heavy metals by green algae and ground rice hulls. Journal of Environment Science and Health, A 28(1), 37-50.
33. 潘致弘,「鉛對健康危害預防手冊」,行政院勞工委員會勞工安全衛生研究所。
34. 經濟部工業局,「作業環境改善與衛生管理實務手冊-有害作業危害預防」。
35. Rorrer G.L., Hsien T.Y., Way J.D. (1993). Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Industrial Engineering and Chemical Research, 32, 2170-2178.
36. Masri M.S., Reuter F.W., Friedman M. (1974). Binding of metal cations by natural substances. Applied Polymer Science, 18(3), 675-681.
37. Roy D., Greenlaw P.N., Shane B.S. (1993). Adsorption of heavy metals by green algae and ground rice hulls. Journal of Environment Science and Health, A 28(1), 37-50.
38. Srivastava S.K., Singh A.K., Sharma A. (1994). Studies on the uptake of lead and zinc by lignin obtained from blach liquor: a paper industry waste materials. Environ. Technol Environmental Technology, 15, 353-361.
39. 林怡雅(2005)。「探討生物聚醣三仙膠在生物吸附程序的應用」,中原大學化學工程研究所,碩士論文。
40. 蔡利局,陳宗懋,王聖其(2006)。「醋酸及硫脲修飾法提升大麥渣對重金屬離子吸附效能之研究」,嘉南學報,32 章:247-260 頁。
41. 郭慧君(2007)。「利用浮水性植物去除水中重金屬之研究」,嘉南藥理科技大學環境工程與科學系,碩士論文。
42. 鍾德龍(2005)。「化學法增強茶葉渣對水中重金屬吸附能力之研究」,嘉南藥理科技大學環境工程與科學系,碩士論文。
43. Sharma D.C., Forster C.F. (1993). Removal of hexavalent chromium using shagnum moss peat. Water Research, 27(7), 1201-1208.
44. Yang T.C., Zall R.R. (1984). Adsorption of metals by natural polymers generated from seafood processing wastes. Industrial Engineering and Chemical Production Research Development, 23, 168-172.
45. Leusch A., Holan Z.R., Volesky B. (1995). Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Tech. Biotechnol, 62, 279-288.
46. Hsien T.Y., and Rorrer G.L., (1995). Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Separation Science technology, 30(12), 2455-2475.
47. Ishii H., Minegishi M., Lavitpichayawong B., Mitani T. (1995). Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. Int. J. Biol. Macromol., 17(1), 21-23.
48. Panday K.K., Prasad G., Singh V.N. (1985). Copper (Ⅱ) Removal from RemovalAqueous Solutions by the Fly As. Water Research, 19(7), 869-873.
49. Fic M., Isenbeck-Schroter M. (1989). Batch studies for investigation of mobility of the heavy metals Cd, Cr, Cu and Zn. Contaminant Hydrology (Netherlands), 4, 69-78.
50. Kinniburgh D.G., Jackson M.L., Syers J.K. (1976). Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Science Society of America, 40, 796-799.
51. 黃汝賢、紀長國、吳春生、何俊杰、尤伯卿(1999)。「環工化學」,三民書局,台北市,第265-268 頁。
52. Li X., Tang Y., Xuan Z., Liu Y., Luo F. (2007). Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology, 55(1), 69-75.
53. Xuan, Z., Tang Y., Li X., Liu Y., Luo F. (2006). Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering, 31(2), 160-164.
54. 李安成、林榮顯、陳志維、林信余、蕭吉晉 (2005)。「吸附在廢水處理之應用(Ι)-以陽離子交換樹脂去除廢水中的鉛離子」,工程科技與教育學刊,2 (1) , 58-66。
55. Gupta V.K., Ali I. (2000). Utilisation of Bagasse Fly Ash (A Sugar Industry Waste) for the Removal of Copper and Zinc from Wastewater. Separation and Purification Technology, 18, 131-140.
56. 謝啟芝(2004)。「乳化內相凝膠法製備海藻膠微球對重金屬吸附行為研究」,靜宜大學應用化學研究所,碩士論文。
57. Elliott H.A., Huang C.P. (1984). Factors affecting the adsorption of complexed heavy metals on hydrous Al2O3 Water Science and Technology, 17(6-7), 1017-1028.
58. Li Y.H., Wang S., Zhang X., Wei J., Xu C., Luan Z., Wu D. (2003). Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin, 38(3), 469-476.
59. 蔡正國(2005)。「複合奈米碳管吸附水溶重金屬污染物之應用研究」,雲林科技大學環境與安全衛生工程系,碩士論文。
60. Ruthven D.M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
61. 蔡嘉仁(2005)。「廢棄活性白土對水溶液中重金屬之吸附特性研究」,義守大學材料科學與工程學系,碩士論文。
62. 林怡妙、林怡、李珮榕、于珮瑩、王美惠,「鎘鎘不入-妙用豆渣吸附重金屬鎘」,中華民國第43 屆中小學科學展覽會參展作品,化工衛工及環工科高職組。
63. Nieboer E., McBryde W.A.E. (1973). Free-energy relationships in coordination chemistry.III. A Comprehensive index to complex stability. Canadian Jourmal of Chemistry, 51(15), 2512-2524.
64. Nieboer E., Richardson D.H.S. (1980). The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical, 1(1), 3-26.
65. 章日行 (2004)。幾丁類物質吸附有機污染物之特性及其操作參數,國科會期末報告,NSC92-2622-E324-002-CC3,朝陽科技大學環境工程與管理系(所)。
66. 黃振家、楊永慶、江昆諒 (1999) 。以聚胺醣淨化飲用水之研究,八十八年度化工學會年會及研討會專輯─化學工程技術研討會論文集,285-288頁。
67. 吳豐智等人 (1999) 。幾丁聚醣圓珠質量傳送及吸附特性研究,第四屆生化工程研討會論文集,415-418 頁。
68. 黃登福 (1998) 。水產甲殼類廢棄物開發高經濟價值之幾丁質、幾丁聚醣及幾丁寡醣研究---幾丁質類產品之食用安全性檢測及其對生物體解毒能力之影響,國科會期末報告,NSC87-2313-B019-040,台灣海洋大學水產食品科學系。
69. 黃振家 (1997) 。以聚胺醣纖維織物吸附及電吸附廢水中之金屬離子研究,國科會期末報告,NSC86-2214-E014-002,中正理工學院應用化學系。
70. 張國慶 (2004) 。以煤灰及水淬高爐石粉製備氣態污染物的吸附與吸收劑,國科會期末報告,NSC92-2211-E020-007,國立屏東科技大學環境工程與科學系。
71. 莊連春 (2004) 。改質蒙特石吸附染料實際廢水之可行性探討,國科會期末報告,NSC92-2622-E238-008-CC3,萬能科技大學環境工程系。
72. 謝祝欽 (2004) 。應用沸石吸附揮發性有機物控制技術之創新研發,國科會期末報告,NSC92-2622-E224-001-CC3,國立雲林科技大學環境與安全工程系暨研究所。
73. 蔡文田 (2003) 。廢活性白土資源再生為黏土---碳吸附劑及其應用於農藥和染料之吸附(III),國科會期末報告,NSC91-2211-E041-005,嘉南藥理學院環境工程衛生系。
74. 席行正、林正芳 (2004) 。以健康風險為依據之焚化灰渣之有害物質控制處理、管理與再利用方法研究---子計畫II:固化法配合微孔吸附劑於飛灰戴奧辛之穩定化研究---固化中間處理之短期溶出評估(I),國科會期末報告,NSC92-2621-Z327-001,高雄第一科技大學環境與安全衛生工程系。
75. 呂明和 (2004) 。乾廢棄生物污泥應用於重金屬之吸附與脫附特性研究,國科會期末報告,NSC92-2211-E168-005,崑山科技大學環境工程系。
76. 江鴻龍 (2003) 。模型廠熱解資源化生物/有機污泥研製燃料及吸附材料(I),國科會期末報告,NSC91-2211-E242-007,輔英科技大學環境工程衛生系。
77. 曾如玲、吳豐智 (2002) 。木質廢棄物製備活性碳之研究,國科會期末報告,NSC90-2211-E239-003,國立聯合技術學院環境與安全衛生工程系。
78. 林正亮 (1999) 。利用農產廢棄物研製活性碳之可行性研究---物性試驗,國科會期末報告,NSC88-2313-B021-014,嘉義技術學院農業機械工程系(科)。
79. 張祖恩 (1999) 。焚化灰渣資源化技術之研發---子計畫II:灰渣類廢棄物氧化鐵覆膜資源化再利用技術之研究(I)---氧化鐵覆膜技術轉化灰渣類廢棄物做為廢水處理吸附劑可行性研究, 國科會期末報告,NSC88-2211-E006-070,成功大學環境工程系。
80. 梁致遠、林鴻淇 (1997) 。茶渣去除鎘、鎳、鉛及鋅的研究,中華生質能源學會會誌,16:1/2,頁40-46。
81. Munaf E., Zein R. (1997). The use of rice husk for removal of toxic metals from wastewater. Environmental Technology, 18(3), 359-362.
82. Namasivayam C., Kadirvelu K. (1997). Agricultural solid wastes for the removal of heavy metals: adsorption of Cu(II) by coirpith carbon. Chemosphere, 34(2), 377-399.
83. Weng L.H., Zhang L.N., Ruan D., Shi L., Xu J. (2004). Thermal gelation of cellulose in a NaOH/Thiourea aqueous solution. Langmuir, 20, 2086-2093.
84. Marshall W.E., Wartelle L.H., Boler D.E., Johns M.M., C.A. Toles (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69(3), 263-268.
85. Wing R.E. (1996). Starch citrate: preparation and ion exchange properties. Stärke, 48(7-8), 275-279.
86. Wing R.E. (1996). Corn fiber citrate: preparation and ion exchange properties. Industrial Crops and Products, 5(4), 301-305.
87. Wing R.E. (1997). Cellulosic citrate: preparation and ion exchange properties. J.Polym. Mater, 14, 303-309.
88. Xie J.Z., Chang H-L., Kilbane J.J. (1996). Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents. Bioresource Technology, 57(2), 127-136.
89. 謝國榕(2003)。「廢矽藻土活化再生為多孔性材料」,嘉南藥理科技大學環境工程與科學系,碩士論文。
90. Bailey J.E., Ollis D.F. (1986). Applied enzyme catalysis. Biochemical engineering fundamentals, McGraw-Hill, Singapo.
91. Thomas W.J., B.D. Crittrnden (1998). Adsorption technology and design. Butterworth-Heinemann.
92. Heimenz P.C. (1986). Priciples of colloid and surface chemistry. 2nd. Marcel Dekker, N.Y.
93. Kinniburgh D.G. (1986). “General purpose adsorption isotherms”. Environment Science and Technology, 20, 895-904.
94. Travis C.C., Etnier E.L. (1981). A survey of sorption relationships for reactive solutes in soil. Journal of Environmental Quality, 10, 8-17.
95. Langmuir I. (1916). Adsorption of gases by solids. J.Am.Chem. Soc, 38(10), 2267.
96. Langmuir I. (1918). Adsorption of gases on plane surface of glass mica and platinum. J. Am. Inst Chem. Soc.
97. McKay G., Otterburn M.S., Sweeney A.G. (1981). The removal of colour from effluent using various adsorbents. III Sillica rate process. Water Res., 14, 14-20.
98. Reed B.E., Matsumoto M.R. (1993). Modelling cadmium adsorption byactivated carbon using Langmuir and Freundlich expressions. Sep. Sci. Technol., 28, 2179-2195.
99. Benhammou A., Yaacoubi A., L. Nibou, B. Tanouti (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Colloid and Interface Science, 282(2), 320-326.
100. Onyango M.S., Kojima Y., Aoyi O., Bernardo E.C., Matsuda H. (2004). Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interface Sci., 279(2), 341-350.
101. Dubinin M.M., Radushkevich L.V. (1947). Proc. Acad. Sci. U.S.S.R. Phys, Chem. Sect, 55, 331.
102. Ho Y.S., McKay G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng., 76(4), 822-827.
103. Ho Y.S., McKay G. (1998). Kinetic models for the sorption of dyes from aqueous solution by wood. J. Environ. Sci. Health Part B: Process Saf. Environ. Prot, 76(B2), 183-191.
104. Weber W., J. Jr., Morriss J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89, 31-60.
105. 楊萬發(1995)。「水及廢水處理化學」,茂昌圖書有限公司。
106. Villaescusa I., Fiol N., Martinez M., Miralles N., Poch J., Serarols J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38(4), 992-1002.
117. 陳靜生、陶澍、鄧寶山、金相燦、季維、唐飛(1992)。「水環境化學」,曉園出版社。

108. Eligwe C.A., Okolue N.B., Nwambu C.O., Nwoko C.I.A. (1999). Adsorption thermodynamics and kinetics of mercury (II), cadmium(II), and lead(II) on lignite. Chem. Eng. Technol., 22(1), 45-49.
109. Akzu Z., Isoglu I. A. (2005). Removal of copper ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp, Process Biochem., 40, 3031-3044.

110. Brenhammou A., Yaacoubi A., Nibou L., Tanouti B. (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies, J. Colloid Interface Sci. 282(2), 320-326.
111. Hines A.L., R.N. Maddox (1984). Mass Transfer Fundamentals and Applications. Prentice Hall PTR.
112. Mohan D., Pittman C.U., Steele P.H. (2006). Single, binary and multi-component adsorption of copper and cadmium from aqueous solution on Kraft lignin- a biosorbent. J. Colloid Interface Sci., 297, 489-504.
113. Smith J.M., Van Ness H.C., Abbott M.M. (1996). Introduction to chemical engineering thermodynamics. McGraw-Hill Professional New York 536-553.

114. Xie J.Z., Chang H.L., Kilbane J.J. II (1996). Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents. Bioresource Technology, 57, 127-136.
115. Yang J.B., Volesky B., (1996). Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Tech. Biotechnol. 66, 355-364.
116. 鍾濬鴻(2008)。「化學法增強木質纖維質對水中重金屬離子吸附能力之研究」,嘉南藥理科技大學環境工程與科學系,碩士論文。
117. 陳宗恩(2007)。「再生廢觸媒吸附染料之特性研究」義守大學土木與生態工程學系,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top