跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾佑聰
研究生(外文):You-Cong Zhong
論文名稱:民俗節慶活動之環境氣膠化學組成及粒徑分佈之特性研究
論文名稱(外文):Characterization of Chemical Compositions and Size Distributions in Ambient Aerosols during the Folk Festival Events
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying I. Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:126
中文關鍵詞:元宵節鹽水蜂炮無機鹽類羧酸脫水醣類粒徑分佈重金屬
外文關鍵詞:Yanshui fireworksLantern Festivalinorganic speciescarboxylic acidsanhydrosugarspotassiummetalssize distribution
相關次數:
  • 被引用被引用:10
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討民俗節慶活動之大氣氣膠化學組成特性變異,研究採集鹽水元宵節時期的沿街繞轎活動以及煙火蜂炮近活動源微粒,並在鹽水國中的頂樓及鹽水武廟附設會館的頂樓採樣,探討當地活動進行前後的大氣氣膠,且在研究初期偶遇一高污染事件(PM episode)也一併探討。主要分析的物種為無機鹽類、羧酸、有機碳及重金屬,以瞭解民俗節慶活動時期的環境氣膠之化學組成及粒徑分佈之特性。
元宵節時期大氣氣狀物之全日平均濃度高低為NH3 >SO2 > HNO2 >HNO3 > HCl > oxalic acid,其中SO2、HCl及HNO3均是日間大於夜間,而HNO2為夜間大於日間,顯示日間之HNO3為HNO2經由光化轉變而成。研究初期的高污染事件,PM2.5無機鹽類全日平均濃度高低為NO3- > SO42- > NH4+,顯示在PM episode發生時NO3-為PM mass最主要的物種。元宵節時期,在鹽水武廟及鹽水國中之PM2.5無機鹽類K+之濃度為元宵節前後時期10倍,此外,Na+、Mg2+、Ca2+、Cl-、PO4-3亦在元宵節期間較元宵節前期明顯上升,顯示元宵節煙火的燃放活動會使上述物種之濃度明顯上升,而以K+最為顯著。元宵節時期之PM2.5氣膠羧酸以oxalic acid之濃度佔最高,而glutaric acid在元宵節時期為元宵節前期的13.9倍,顯示glutaric acid在煙火燃放中有特殊高比例的增加,故為煙火燃燒之重要指標物種。而malonic acid/succinic acid之比值> 3,顯示元宵節慶之大氣氣膠另有光化反應後的二次產物。而acetic acid/formic acid (A/F)的比值遠大於1,顯示元宵節慶之大氣氣膠亦有來自原生物種之貢獻。此外levoglucosan在元宵節慶中亦有高濃度的上升趨勢顯示爆竹煙火的燃放存在植物纖維的原生燃燒產物。元宵節前後時期之質量濃度粒徑主要分佈在droplet mode上,Na+在元宵節時期粒徑在奈米的部分有明顯的增加,煙火的燃放對於K+在droplet mode的增量有明顯的貢獻。鹽水武廟及鹽水國中在元宵節前後及元宵節期間的oxalic acid波峰均落在droplet mode上與SO42-有非常相似之粒徑濃度分佈。火藥主要原料為硝酸鉀,顯現在元宵節現場煙火與蜂炮燃煙之重金屬主要以K佔最大濃度,同時導致元宵節期間PM2.5之K+的高濃度。
The subject of this report is focused on the chemical properties of aerosol in ambient environment and near activity sources during the folk festival events. The collection of air samples was conducted from the roof top of Yanshui Junior High School and Temple of the Martial Deity. There occurred a PM episode during the intensive program. The main species in aerosol to discuss are inorganic species, carboxylic acids, anhydrosugars and metals. The results demonstrate chemical compositions and size distributions in aerosols during the folk festival events.
The concentration of gaseous pollutants in the atmosphere Latern Festival is the following order NH3> SO2> HNO2> HCl> HNO3> oxalic acid. There are high concentrations of SO2, HCl and HNO3 in the daytime, meanwhile high concentration of HNO2 occurred in the nighttime, indicating that during the daytime HNO2 is converted to HNO3 by photochemical reactions in atmosphere.
During the PM episode, the PM2.5 concentration of inorganic species is the following order NO3- > SO42-> NH4+ iIndicating in the PM episode occurs, NO3-is the most important species in PM mass. Compared to before and after Lantern Festival, K+ concentration during the Latern Festival increased 10 times. Furthermore, during the Latern Festival Na+、Mg2+、Ca2+、Cl-、PO43-concentration are much higher than those before Latern Festival, indicating burning of fireworks will significantly increase the concentration of above-mentioned species, specifically K+. During the Latern Festival, oxalic acid is the most dominant carboxylic acid in PM2.5. However, glutaric acid increase 13.9 times, compared to before Lantern Festival, indicating glutaric acid in burning of fireworks significantly increase and is regarded as an important emission indicator of firework. The ratio of malonic acid/succinic acid is > 3, indicating during Lantern Festival there also occurred apparent secondary photochemical reaction. The ratio of acetic acid/formic acid is > 1, indicating during Lantern Festival there exists the primary emission released from the fireworks. Levoglucosan is the most important anhydrosugar species during the activity program. During the Latern Festival, the major mass with peak concentration at droplet mode, the Na+ has increased significantly at nuclei mode during the burning of fireworks, K+ at the droplet mode of significant incremental contribution. Oxalic was major at droplet mode, and SO42- are very similar. The main raw material in fireworks is potassium nitrate. In burning of fireworks, K mainly accounted for the highest concentration of metals, which also led to the high concentration of PM2.5 K + during the Lantern Festival.
目錄

摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 前言 1
1-1研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 大氣中的懸浮微粒 4
2-2大氣氣膠無機鹽類之來源及組成 6
2-2 大氣氣膠羧酸之生成及來源 7
2-3 大氣氣膠無機鹽類及羧酸之粒徑分佈 12
2-3-1 大氣氣膠無機鹽類之粒徑分佈 12
2-3-2 大氣氣膠羧酸之粒徑分佈 14
2-4生質燃燒之脫水醣類來源 17
2-5 重金屬 17
2-5-1 煙火與重金屬 18
第三章 研究設備與方法 19
3-1 採樣地點及採樣時間 19
3-2 採樣方法與設備 21
3-4 分析前處理 33
3-5樣品分析 34
3-5-1 大氣氣膠水溶性陰、陽離子及草酸之分析 34
3-5-2 羧酸分析 35
3-5-3 糖醇類分析 38
3-5-4 碳分析 38
3-5-5 重金屬分析 39
3-6 樣品分析之品保品管 39
第四章 元宵節時期空氣品質狀態之大氣氣膠氣狀物之探討 42
4-1元宵節前後時期之大氣氣狀物全日濃度變異比較 42
4-2元宵節前後時期之大氣氣狀物日夜濃度變化 46
4-3 各地氣狀物濃度比較比較 51
第五章 台南鹽水區元宵時期大氣氣膠之組成差異 55
5-1 元宵時期PM2.5微粒無機鹽類之變異 55
5-1-1鹽水武廟PM2.5無機鹽類之變異 55
5-1-2鹽水國中PM2.5無機鹽類之變異 57
5-2 元宵時期PM2.5微粒羧酸之變異 60
5-2-1鹽水武廟PM2.5羧酸之變異 60
5-2-2鹽水國中PM2.5羧酸之變異 61
5-3 元宵節時期PM2.5之脫水醣類之變異 65
5-4 大氣氣膠無機與有機之全日成份比例比較 68
5-4-1一般污染時期之全日成份比例比較 68
5-4-2元宵節前期之全日成份比例比較 72
5-4-3元宵節時期之全日成份比例比較 76
5-4-4元宵節後期之全日成份比例比較 80
5-5元宵節前期與其他時期之PM2.5大氣氣膠濃度比較 84
第六章 元宵節時期鹽水蜂炮大氣氣膠組成份之粒徑分佈變異研究 87
6-1 鹽水武廟與鹽水國中之大氣氣膠質量濃度粒徑分佈 87
6-2 鹽水武廟及鹽水國中大氣氣膠無機鹽類之粒徑分佈百分比濃度比較 89
6-3鹽水武廟與鹽水國中大氣氣膠有機酸之粒徑分佈與百分比濃度比較 98
第七章 元宵節鹽水蜂炮之金屬燃煙組成變異探討 107
7-1 樣本採集 107
7-2 鹽水蜂炮之日夜金屬燃煙濃度比較 107
第八章 結論與建議 112
8-1結論 112
8-2 建議 115
參考文獻 116
參考文獻

Acker, K., Mertes, S., Möller, D., Wieprecht, W., Auel, R., Kalaβ, 2002. Case study of cloud physical and chemical processes. Atmospheric Research 64, 41-51.
Alessandra, D.A., Paola, F., Franco, L., Silvia, N., Andrea, P., Gianluigi, V,. 2008. The impact of fireworks on airborne particles. Atmospheric Environment 42, 1121-1132.
Alexandre, J., Audrey, S., Tom, K., Michel, F., Ewa, D.Z., Valbona, C., David, M., René, S., Réal, D''., Alain, M., Jeffrey, B., 2010. Characterisation of particulate exposure during fireworks displays. Atmospheric Environment 44, 4325-4329.
Anlauf, K., Li, S.M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., Wiebe, A., 2006. Ionic composition and size characteristics of particles in the lower Fraser Vellay: Pacific 2001 field study. Atmospheric Environment 40, 2662-2675.
Attri, A.K., Kumar, U., Jain, V.K., 2001. Microclimate formation of ozone by fireworks. Nature 411, 1015.
Bai, H., Lu, C., Chang, K.-F., Fang, G.-C., 2003. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmospheric Environment 37, 941-947.
Bardouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208.
Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environmenet 37, 2825-2835.
Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulomonary deposition assessment. Atmospheric Environment 31, 3659-3665.
Bierbach, A., Barnes, I., Becker, K.H., Wiesen, E., 1994. Atmospheric chemistry of unsaturated carbonyls: Butenedial, 4-oxo-2-pentenal, 3-hexene-2,5-dione, maleic anhydride, 3H-furan-2-one, and 5-methyl-3H-furan-2one. Environment Science & Technology 28, 715-729.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. Technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203.
Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations Journal of the Air and Waste Management Association 47, 2-19.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31, 2061-2081.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment 30, 4233-4249.
Cheng, M.T., Tsai, Y.I., 2000. Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. The Science of the Total Environment 263, 101-114.
Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 33, 2661-2668.
Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13,111-13,123.
Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air and Waste Management Association 47, 411-418.
Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air Pollution. Annual Reviews of Public Health 15, 107-132.
Drewnick, F., Hings, S.S., Cutius, J., Eerdekens, G., Williams, J., 2006. Measurement of fine particulate matter and gas-phase species during the new year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment 40, 4316-4327.
Dumdei, B.E., Kenny, D.V., Shepson, P.B., Kleindienst, T.E., Nero, C.M., Culpitt, L.T., Claxton, L.D., 1988. MS/MS analysis of the products of toluene photooxidation and measurement of their mutagenic activity. Environment Science and Technology 22, 1493-1498.
Dutcher, D.D., Perry, K.D., Cahill, T.A., Copeland, S.A., 1999. Effects of indoor pyrotechnic displays on the air quality in the Houston Astrodome. Journal of Air & Waste Management Association 49, 156-160.
Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 410, 257-259.
Frank, D., Silke, S.H., Joachim, C., Gunter, E., Jonathan, W., 2006. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment.40, 4316-4327
Georg, S., Johannes, H.S., Michaela, F., Friedrich, G., Max, B., 2008. Heavy metals from pyrotechnics in New Years Eve snow. Atmospheric Environment 42, 8616-8622.
Gerry, C., Russell, D., Marc, B., Mac, D., 2010.Emission factors and exposures from ground-level pyrotechnics. Atmospheric Environment 44, 3295-3303.
Grosjean, D., 1989. Organic acids in southern California air: ambient concentrations, mobile source emissions, in-situ formation and removal processes. Environmental Science and Technology 23, 1504-1506.
Hartmann, W.R., Santana, M., Hermoso, M., Andreae, M.O., Sanhueza, E., 1991. Diurnal cycles of formic and acetic acids in the northern part of Guyana shield, Venezuela. Journal of Atmospheric Chemistry 13, 63-72
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 α-dicarbonyls. Environmental Science and Technology 21, 52-63.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040.
Hsieh, L.Y., Chen, C.L., Wan, M.-W., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42, 6836-6850.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2007. Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environment 41, 6648-6661.
Hsieh, L.Y.,Kuo, S.C., Chen, C.L., Tsai, Y.I., 2009.Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Hudson, J.G., 1992. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607.
Ikegami, M., Okada, K., Zaizen, Y., Makino, Y., Jensen, J.B., Gras, J.L., Harjanto, H., 2001. Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires. Atmospheric Environment 35, 4237-4243.
John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110.
Kawamura, K., Kasukabe, H., Barrie, L.A., 1996a. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: One year of observations. Atmospheric Environment 30, 1709-1722.
Kawamura, K., Kasukabe, H., Yasui, O., Barrie, L.A., 1995. Production of dicarboxylic acids in the arctic atmosphere at polar sunrise. Geophysical Research Letters 22, 1253-1256.
Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Kawamura, K., Sempere, R., Imai, Y., Fujii, Y., Hayashi, M., 1996c. Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. Journal of Geophysical Research 101, 18721-18728.
Kawamura, K., Steinberg, S., Kaplan, I.R., 1996b. Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in southern California wet precipitations: Comparison of urban and nonurban samples and compositional changes during scavenging. Atmospheric Environment 30, 1035-1052.
Kerminen, V.M., 2001. Relative roles of secondary sulfate and organics in atmospheric Cloud condensation nuclei production. Journal of Geophysical Research 106, 17321-17333.
Kerminen, V.M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acid in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362.
Kerminen, V.M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942.
Kleindienst, T.E., Smith, D.F., Li, W., Edney, E.O., Driscoll, D.J., Speer, R.E., Weathers, W.S., 1999. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmospheric Environment 33, 3669-3681.
Kohler, H., 1936. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society 32, 1152-1161.
Konarik, S., Viney, P.A., 2008.Trends in agricultural ammonia emissions and ammonium concentrations in precipitation over the Southeast and Midwest United States. Atmospheric Environment 42, 3238-3252.
Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S., Kulshrestha, M.J., 2004. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment 38, 4421-4425.
Lee, C.T., Hsu, W.C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, J.H., Kim, Y.P., Moon, K.C., Kim, H,K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643.
Lee, W.H., Lacobellis, S.F., Somerville, R.C.J., 1997. Cloud radiation forcings and feedbacks: general circulation model tests and observational validation. Journal of Climate 10, 2479-2496.
Liu, D.Y., Rutherford, D., Kinsey, M., Prather, K.A., 1997. Realtime monitoring of pyrotechnically derived aerosol particles in the troposphere. Analytical Chemistry 69, 1808-1814.
Lohmann, U., Lesins, G., 2002. Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012-1016.
Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934.
Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
Matsumoto, K., Tanaka, H., Nagao, I., Ishizaka, Y., 1997. Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere. Geophysical Research Letters 24, 655-658.
Matsumoto, M., Okita, T., 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmospheric Environment 32, 1419-1425.
Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037.
Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Pakkanen, T. A., 1996. Study of formation of coarse particle nature aerosol. Atmospheric Environment 30(14), 2475-2482.
Peng, C., Chan, C.K., 2001. The water cycles of water soluble organic salts of atmospheric importance. Atmospheric Environment 35, 1183-1192.
Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environmental Science and Techonolog 35, 4495-4501.
Perry, K.D., 1999. Effects of outdoor pyrotechnic displays on the regional air quality of Western Washington State. Journal of Air and Waste Management Association 49, 146-155.
Pope III, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: Lines that connect. Journal of Air and Waste Management Association 56, 709-742.
Possanzini, M., Santis, F., Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602.
Ravindra, K., Mittal, A.K., Grieken, R.V., 2001. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Reviews on Enviromental Health 16, 169-189.
Ravindra, K., Mor, S., Kaushik, C.P., 2003. Short-term variation in air quality associated with fireworks events: a case study. Journal of Environmental Monitoring 5, 260-264.
Renato, C., Alfred, J.V., 2010. Effect of fireworks on ambient air quality in Malta. Atmospheric Environment 44, 4521-4527.
Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammnonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330.
Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: Seasonal and air mass characteristics. Environmental Science and Technology 35, 95-101.
Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics. From Air Pollution to Climate Change. Wiley, New York 1326pp.
Sempere, R., Kawamura, K., 1996. Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from the western Pacific. Atmospheric Environment 30, 1609-1619.
Shafizadeh, F., 1968. Pyrolysis and Combustion of Cellulosic Materials. Advances in Carbohydrate Chemistry, Academic Press 23, 419-474.
Shi, Y., Zhang, N., Gao, J., Li, X., Cai, Y., 2011. Effect of fireworks display on perchlorate in air aerosols during the Spring Festival. Atmospheric Environment 45, 1323-1327.
Shulman, M.L., Jacobson, M.C., Charlson, R.J., Synovec, R,E., Young, T.E., 1996. Dissolution behaviour and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters 23, 277-280.
Simoneit, B.R.T., 2002. Biomass burning?- a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Simoneit, B.R.T., Schauer, J.-J., Nolte, C.-G., Oros, D.-R., Elias, V.-O., Fraser, M.-P., Rogge, W.-F., Cass, G.-R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 173-182.
Sjödin, A. , Ferm, M. , 1985. Measurement of nitrous acid in urban ares. Atmospheric Environment 19, 985-992.
Spengler, J.D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956.
Spengler, J.D., Kourtrakis, P., Dockery, D.W., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: Air pollution exposures. Environmental Health Perspective 104, 492-499.
Stephens, G.L., Tsay, S.C., Stackouse, P.W., Flat, P.J., 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of Atmospheric Science 47, 1742-1753.
Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment 40, 795-820.
Sun, Y., Wang, Y., Zhang, C.C,. 2009. Measurement of the vertical profile of atmospheric SO2 during the heating period in Beijing on days of high air pollution. Atmospheric Environment 43, 468-472
Talbot, R.W., Andreae,M.O., Berresheim,H., Jacob, D.J., Beecher, K.M., 1990. Sources and sinks of formic, acetic and pyruvic acids overcentral Amazonia: 2. Wet deposition. Journal of Geophysical Research 95, 16799-16811.
Talbot, R.W., Beecher, K.M., Harris, R.C., Cofer, R.W., 1988. Atmospheric geochemistry of formic and acetic acids at a midlatitude temperate site. Journal of Geophysical Research 93,1638-1652.
Teresa, M., Xavier, Q., Andre’s, A., Mari, C.M., Jorge, P., Sergio, R., Jose’, V.M., Carles, F., Wes, G., 2007. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. Atmospheric Environment.41, 913-922
Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Tsai, Y.I., Chen, C.L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Turnbull, A,B., Harrison, R.M., 2000. Majou component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137.
Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences 34, 1149-1152.
Urbansky, E.T., 1998. Perchlorate chemistry: implication for analysis and remediation. Biorem. J. 2, 81-95.
Vecchi, R., Bernardoni, V., Cricchioa, D., D’Alessandroa, A., Fermob, P., Lucarellic, F., Navad, S., Piazzalungab, A., Vallia, G., 2008. The impact of fireworks on airborne particles. Atmospheric Environment 42, 1121-1132.
Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density 38, 1235-1246.
Wang, Y., Zhuang, G., Chen, S., An, Z., Zheng, A., 2007. Characteristics and sources of formic, acetic and oxalic acidsin PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Reseach 84, 169-181.
Wang, Y., Zhuang, G., Xu, C., An, Z., 2007. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment 41, 417-431.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., 1994. Chemical mass balance source apportionment of PM10 during the Southern California air quality study. Aerosol Science and Technology 21, 1-36.
Whitby, K.T., Cantrell, B., 1976. Fine Particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Wu, P.M., Okada, K., 1994. Nature of coarse nitrate particles in the atmosphere a single particle approach. Atmospheric Environment 28, 2053-2060.
Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002a. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Yao, X., Chan, C.K., Fang, M., Lau, A.P.S., Hu, M., 2003. Size distributions and formation of ionic species in atmospheric particulate pollutans in Beijing, China: 2-dicarboxylic acids. Atmospheric Environment 37, 3001-3007.
Yao, X., Fang, M., Chan, C.K., 2002b. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yu, S.C., 2000. Role of organic acids formic, acetic, pyruvic and oxalic in the formation of cloud condensationnuclei CCN: A review. Atmospheric Research 53, 185-217.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853.
Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R.T., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research 108, 4285.
Turpin, B.J., Huntzicker, J.J., 1991. Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. Part A. General Topics 25, 207-215.
吳易儒「民俗活動對於空氣品質之影響」,國立成功大學環境工程學系碩士論文,台南,2004。
李俊佑,「郊區秋季之大氣氣膠無機鹽類及羧酸之特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2010。
翁子翔,「背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2006。
蔡俊宏,「氣象因子與大氣懸浮微粒含碳量變異關聯性研究」,國立成功大學環境工程學系碩士論文,台南,2007。
蔡士鳴,「大氣中懸浮微粒含碳之分佈與來源」,國立成功大學環境工程學系碩士論文,台南,2002。
蔡瀛逸、郭素卿、黃香儒,「大氣二元有機酸之組成粒徑分佈與時變異」,第十一屆中華民國國際氣膠科技研討會論文集,第156-161頁,台中,2004。
馬玉芊,「低海拔偏遠地區與平地郊區之大氣氣膠二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2008。
黃香儒,「秋冬季節之大氣氣膠無機鹽類及二元酸之組成及粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃世傑、林國凍(2009)。「健康與體育」領域教學之批判探究。大專體育,101,62-69。
2. 黃顯章(2007)。合作學習在健康與體育領域之應用。屏東教大體育,1,40-48。
3. 陳燕嘉、陳民輝、范渚鑫、董恕平、楊忠謀、蕭志界、王立敏(2004)。評估民眾對心肺復甦術教學之成效。臺灣急診醫學會醫誌,6(2),322-330。
4. 陳建森、蔡易峻(2003)。九年一貫課程「健康與體育領域」第二階段教科書內容分析。馬偕護理專科學校學報,3,263-282。
5. 陸希平、王本榮、陳家玉(2006)。問題導向學習。醫學教育,10(2),89-97。
6. 陸希平、林妍如、陳家玉(2005)。問題導向學習「同儕評估量表」的內容效度及因素分析。醫學教育,9(2),138-148
7. 周建智、黃美瑤(2010)。健康體適能教學方案在高中體育課的應用:問題導向學習理論觀點。體育學報,43(2),149-170。
8. 黃松元(2000)。健康促進與健康教育。台北:師大書苑。
9. 郭雪玉(2006)。國立彰化師範大學新生對事故傷害處理能力與急救知識需求調查研究。學校衛生,49,1-14。
10. 李倩淑、陳政友(2009)。基隆市國中學生急救知識、態度、自我效能及行為意向之探討。學校衛生,54,69-89。
11. 李勝雄(2004)。健康與體育學習領域第一階段教科書內容分析之研究。屏師運動科學學刊,1,1-19。
12. 吳耀明(2005)。問題本位學習在國小自然科之應用研究。新竹教育大學學報,21,35-73。
13. 尤煌傑(2008)。PBL 與哲學:「以問題為基礎的學習」(PBL)教學法在「西方美學理論及批 判」課程的應用。哲學與文化,35(5),109-121。
14. 秦金生、黃松元(2002)。加強校園安全促進學生健康。學校衛生,41,69-80。
15. 洪淑君(2009)。問題導向學習成效之後設分析。新臺北護理期刊,