跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建潢
研究生(外文):Chien-Huang Lee
論文名稱:低溫電漿結合濾材去除奈米微粒之研究
論文名稱(外文):Removal of Nanoparticles by the Hybrid System of Non-thermal Plasma and Filter
指導教授:黃小林黃小林引用關係
指導教授(外文):Hsiao-Lin Huang
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:產業安全衛生與防災研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:110
中文關鍵詞:室內空氣品質氣膠過濾電漿介電質阻擋放電
外文關鍵詞:Indoor air qualityAerosolFiltrationPlasmaDielectric Barrier Discharges
相關次數:
  • 被引用被引用:0
  • 點閱點閱:589
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
相關流行病學研究已指出暴露於奈米微粒可能會造成人們呼吸系統、心血管疾病等健康危害,因此如何有效淨化室內空氣中的微粒已成了當前重要課題。近年來,電漿技術已被研究於去除粒狀跟氣態污染物,但在奈米微粒控制應用上卻鮮少有相關探討,因此本研究之目的為應用DBD電漿(Dielectric Barrier Discharges, DBD)系統及DBD電漿結合濾材複合系統來探討去除奈米微粒的可行性。
本研究以卡里遜霧化器產生20.2~98.2 nm範圍之NaCl挑戰氣膠,以探討在不同相對濕度(30~70%)、停留時間(1~5秒)、放電電壓(0~20 kv)及放電頻率(60~300 Hz)下,DBD電漿系統對奈米微粒之去除效率。此外,本研究於DBD電漿後串聯濾材單元,探討帶電與不帶電濾材於不同表面風速(0.1~1.0 m/s)下,對穿透DBD電漿系統未被去除之奈米微粒去除效率及DBD電漿結合濾材對奈米微粒總去除效率。奈米微粒去除效率係以掃描式電移動度微粒粒徑分析儀(Scanning Mobility Particle Sizer, SMPS)量測流經電漿反應器前後及濾材前後之不同粒徑下的粒數濃度變化計算而得。
研究結果顯示,DBD電漿系統在未產生電漿前之少量放電仍能去除少量奈米微粒,產生電漿後對奈米微粒去除率則顯著提升。奈米微粒去除效率隨頻率增加而增加,不過當頻率增加至150 Hz極值後,去除效率隨頻率增加而下降。提高相對濕度與停留時間皆有助於增加奈米微粒去除效率。此外,本研究之電漿系統對於濃度為103~106 #/cm3之奈米微粒皆具良好去除效力。無論濾材是否帶電,其對穿透電漿區之奈米微粒去除效率皆隨粒徑增加而增加,微粒與濾材間之靜電作用力有助於奈米微粒收集,而增加表面風速會減少微粒與濾材接觸機會而降低奈米微粒去除效率。
本研究之DBD電漿系統在固定電壓18 kv、頻率60 Hz、停留時間1秒下,對奈米微粒粒數(ηdp no)均有77.9%以上之去除效率;單獨濾材過濾單元於表面風速0.1 m/s下,對穿透DBD電漿系統之奈米微粒粒數(ηdp no)去除效率則在60~80%以上;DBD電漿系統結合濾材過濾單元對奈米微粒粒數(ηdp no)去除效率高達93.5%以上、總奈米微粒粒數(ηtotal no)也有98.7%。綜合以上得知本研究建置之單獨DBD電漿或DBD電漿結合濾材之複合系統具有相當好的奈米微粒去除效率,其是一相當具有潛力應用於一般室內或職場室內環境之奈米微粒控制技術。
Related epidemiology studies have indicated that exposure of nanoparticles can cause the adverse health effects on respiratory and cardiovascular systems. Therefore, how to remove indoor nanoparticles has become the current important issue. The plasma technology of dielectric barrier discharges (DBD) has been studied to remove particulate and gaseous pollutants in recent years. However, there are only little literatures on exploring the nanoparticle control by using DBD plasma. The objective of this study was to explore the feasibility of removing nanoparticles by using single DBD plasma and the hybrid system of DBD plasma and filter.
The NaCl challenge aerosols with the diameters of 20.2~98.2 nm were generated by a Collision Nebulizer to explore the removal efficiencies of nanoparticles by using DBD plasma system at relative humidity of 30~70%, retention time of 1~5 sec, applied voltage of 0~20 kv, and frequency of 60~300 Hz. Otherwise, the removal efficiencies of nanoparticles, which were not captured and passed through the DBD plasma system, were explored by non-electret and electret filter at face velocity of 0.1~1.0 m/s. The total removal efficiency of nanoparticles by the hybrid system of DBD plasma and filter was also measured in this study. The removal efficiencies of nanoparticles were calculated according to the number concentrations of nanoparticles which were measured by a Scanning Mobility Particle Sizer (SMPS) at the inlet and outlet of DBD plasma unit and filter.
The results indicated that little discharges of DBD plasma system before generating plasma still can remove a small quantity of nanoparticles. However, the removal efficiencies of nanoparticles increased significantly after a large amount of plasma were generated.The removal efficiency of nanoparticles increased with frequency. When the frequency reached to an extreme value of 150 Hz, the removal efficiency increased with frequency decreased. Increasing relative humidity and retention time of nanoparticles in DBD reactor also facilitated the removal efficiency of nanoparticles. Furthermore, the DBD plasma system had good removal efficacy for nanoparticles with the number concentrations of 103~106 #/cm3. No matter whether the filter with charges or not, the removal efficacy of nanoparticles passing through DBD plasma increased with diameter of nanoparticle. The electrostatic force between nanoparticles and electret filter was helpful in collecting nanoparticles. Increasing surface velocity would reduce the collection efficiency of nanoparticles because of the decrease of contact probability between nanoparticles and filter.
This study showed that the size-selective removal efficiencies of nanoparticles (ηdp no) were above 77.9% by only using DBD plasma system at applied voltage of 18 kv, frequency of 60 Hz, and retention time of 1 sec. The size-selective removal efficiencies of nanoparticles (ηdp no) which passed through DBD plasma system were above 60~80% by only using filter unit at surface velocity of 0.1 m/s. The size-selective (ηdp no) and total (ηtotal no) removal efficiencies of nanoparticles were above 93.5% and 98.7% respectively by using the hybrid system of DBD plasma and filter. It was concluded that single DBD plasma system or the hybrid system of DBD plasma and filter had good removal efficiency for nanoparticles. They are the potential technologies for applying to control nanoparticles in general or occupational indoor environments.
中文摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 4
第二章 文獻回顧 5
2.1 室內空氣品質現況 5
2.2 室內環境氣膠來源 8
2.3 室內氣膠危害性 8
2.4 奈米微粒來源與健康危害 10
2.5 室內懸浮微粒控制技術 13
2.5.1 負離子 (Negative Ions) 13
2.5.2 靜電集塵器 (Electrostatic precipitator, ESP) 14
2.5.3 濾材過濾 16
2.5.3.1 微粒過濾機制 19
2.5.4 電漿技術 (Plasma) 23
2.5.4.1 電漿產生原理 23
2.5.4.2 電漿分類 23
2.5.4.3 非熱電漿種類 24
2.5.4.4 非熱電漿於氣膠控制之應用 27
第三章 材料與方法 29
3.1 研究流程 29
3.2 實驗系統 32
3.3 實驗設備與材料 35
3.3.1 實驗設備 35
3.3.2 實驗材料 37
3.4 實驗方法與步驟 38
3.4.1 實驗相關參數與設定 38
3.4.2 實驗步驟 40
3.4.3 數據分析 41
第四章 結果與討論 45
4.1 挑戰氣膠粒徑分布 45
4.2 電漿產生之起始電壓 48
4.3 電壓對氣膠去除效率之影響 50
4.4 頻率對氣膠去除效率之影響 58
4.5 停留時間對氣膠去除效率之影響 62
4.6 相對濕度對氣膠去除效率之影響 65
4.7 氣膠濃度對電漿系統去除效率之影響 68
4.8 濾材帶電性對濾材去除穿透電漿系統之奈米微粒的影響 71
4.9 表面風速對去除穿透電漿之奈米微粒的影響 76
4.10 DBD電漿系統結合帶電與不帶電濾材之奈米微粒去除效率 82
第五章 結論與建議 89
5.1 結論 89
5.2 建議 92
參考文獻 94
Abt, E., Suh, H.H., Allen, G., and Koutrakis, P. “Characterization of Indoor Particle Sources: A Study Conducted in the Metropolitan Boston Area”, Environmental Health Perspectives, 108(1): 35–44, 2000.
Afshari, A., Matson, U., and Ekberg, L.E. “Characterization of Indoor Sources of Fine and Ultrafine Particles: A Study Conducted in a Full-Scale Chamber”, Indoor Air, 15(2): 141-150, 2005.
Baron, P.A., and Willeke, K. “Aerosol Measurement: Principles, Techniques, and Applications”, Wiley, New York, 2001.
Baumgartner, H.P., and Löffler, F. “The Collection Performance of Electret Filters in the Particle Size Range of 10 nm-10 µm”, Journal of Aerosol Science, 17(3): 438-445, 1986.
Bermudez, E., Mangum, J.B., Wong, B.A., Asgharian, B., Hext, P.M., Warheit, D.B., and Everitt, J.I. “Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles”, Toxicological Sciences, 77(2): 347-357, 2004.
Bologa, A., Paur, H.R., Seifert, H., Wäscher, Th., and Woletz, K. “Novel Wet Electrostatic Precipitator for Collection of Fine Aerosol”, Journal of Electrostatics, 67(2-3): 150-153, 2009.
Boni, A., and Clark, M. ”Filter Media: Improving Filter Media to Achieve
Cleaner Air”, Filtration & Separation, 45(9):20-23, 2008.
Boskovic, L., Agranovski, I. E., Altman, I. S., and Braddock, R. D. “Filter efficiency as a function of nanoparticle velocity and shape”, Journal of Aerosol Science, 39(7): 635-644, 2008.
Brook, R.D., Franklin, B., Wayne, C., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C., and Tager, I. “Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association”, Circulation, 109(21): 2655-2671, 2004.
Brown, D.M., Wilson, M.R., MacNee, W., Stone, V., and Donaldson, K. “Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines”, Toxicology and Applied Pharmacology, 175(3): 191-199, 2001.
Brown, R.C. “Air Filtration”, Pergamon Press Inc., New Tork, 1993.
Burge, H.A., and Otten, J.A. “Fungi In: Macher”, J.M., Ammann, H.A., Burge, H.A. and Milton, D.(eds) Bioaerosol: assessment and control, Cincinnati, American Conference of Governmental Industrial Hygienists (ACGIH), 19: 1-13,1995.
Byeon, J.H., Hwang, J., Park, J.H., Yoon, K.Y., Ko, B.J., Kang, S.H., and Ji, J.H. “Collection of Submicron Particles by an Electrostatic Precipitator Using a Dielectric Barrier Discharge”, Journal of Aerosol Science, 37(11): 1618-1628, 2006.
Byeon, J.H., Ji, J.H., Park, J.H., Yoon, K.Y., and Hwang, J. “Charge distributions of aerosol dioctyl sebacate particles charged in a dielectric barrier discharger”, Journal of Aerosol Science, 39(5): 460-466, 2008.
Chae, J.O. “Non-thermal Plasma for Diesel Exhaust Treatment”, Journal of Electrostatics, 57(3-4): 251-262, 2003.
Chao, C.Y.H., Tung, T.C.W, and Burnett, J. “Influence of Different Indoor Activities on the Indoor Particulate Levels in Residential Buildings”, Indoor Built Environment, 7(1): 110-121, 1998.
Cox, C.S., and Wathes, C.M. “Bioaerosols Handbook”, NY: Lewis Publishers, 1995.
Dennekamp, M., Howarth, S., Dick, C.A.J., Cherrie, J.W., Donaldson, K., and Seaton, A. “Ultrafine Particles and Nitrogen Oxides Generated by Gas and Electric Cooking”, Occupational and environmental medicine, 58(8): 511-516, 2001.
Douwes, J., Thorne, P., Pearce, N., and Heederic, D. “Bioaerosol Health Effect and Exposure Assessment: Progress and Prospects”, The Annals of Occupational Hygiene, 47(3): 187–200, 2003.
Dramane, B., Zouzou, N., Moreau, E., and Touchard, G. “Electrostatic Precipitation of Submicron Particles Using a DBD in Axisymmetric and Planar Configurations”, IEEE Transactions on Dielectrics and Electrical Insulation, 16(2): 343-351, 2009.
Dramane, B., Zouzou, N., Moreau, E., and Touchard, G. “Electrostatic precipitation in wire-to-cylinder configuration: effect of the high-voltage power supply waveform”, Journal of Electrostatics, 67(2-3): 117-122, 2009.
Dramane, B., Zouzou, N., Moreau, E., and Touchard, G. “Electrostatic precipitation in wire-to-cylinder configuration: Effect of the high-voltage power supply waveform”, Journal of Electrostatics, 67(2-3): 117-122, 2009a.
Dramane, B., Zouzou, N., Moreau, E., and Touchard, T. “Electrostatic Precipitation of Submicron Particles using a DBD in Axisymmetric and Planar Configurations”, IEEE Transactions on Dielectrics and Electrical Insulation, 16(2): 343-351, 2009c.
Durme, J. V., Dewulf, J., Leys, C., and Langenhove, H. V. “Combining Non-Thermal Plasma with Heterogeneous Catalysis in Waste Gas Treatment: A review”, Applied Catalysis B: Environmental, 78(3-4): 324-333, 2008.
Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., and Oberdörster, G. “Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System”, Environmental Health Perspectives, 114(8): 1172–1178, 2006.
Galka, N., and Saxena, A. ” High Efficiency Air Filtration: The Growing Impact of Membranes”, Filtration & Separation, 46(4):22-25, 2009.
Gopee, N.V., Roberts, D.W., Webb, P., Cozart, C.R., Siitonen, P.H., Warbritton, A.R., Yu, W.W., Colvin, V.L., Walker, N.J., and Howard, P.C., “Migration of Intradermally Injected Quantum Dots to Sentinel Organs in Mice”, Toxicological Sciences, 98(1): 249-257, 2007.
Grinshpun, S.A., Mainelis, G., Reponen, T., Willeke, K., Trunov, M.A., and Adhikari, A. “Effect of Wearable Ionizers on the Concentration of Respirable Airborne Particles and Microorganisms,” Journal of Aerosol Science, 32(1): 335-336, 2001.
Hind, W.C. “Aerosol Technology”, New York: Wiley, 1982.
Hinds, W.C. “Aerosol technology: properties, behavior, and measurement of airborne particles”, Wiley-Interscience, New York, 2nd Edition, 1999.
Huang, C.H., and Chang, C.L. “Particulate matter removal from a gas stream using high-voltage discharge plasma”, Separation Science and Technology, 43(5): 1260-1271, 2008.
Huang, H.L., and Yang, S.H. “Filtration Characteristics of Polysulfone Membrane Filters”, Journal of Aerosol Science, 37(10): 1198-1208, 2006.
Huang, S.H., and Chen, C.C. “Filtration Characteristics of a Miniature Electrostatic Precipitator”, Aerosol Science and Technology, 35(4): 792–804, 2001.
Huang, S.H., and Chen, C.C. “Ultrafine Aerosol Penetation Through Electrostatic Precipitators”, Environmental Science and Technology, 36(21): 4625-4632, 2002.
Huang, S.H., Chen, C.W., Chang, C.P., Lai, C.Y., and Chen, C.C. “Penetration of 4.5 nm to 10 µm aerosol particles through fibrous filters”, Journal of Aerosol Science, 38(7): 719-721, 2007.
Hussein, T., Hämeri, K., Heikkinen, M.S.A., and Kulmala, M. “Indoor and Outdoor Particle Size Characterization at a Family House in Espoo-Finland”, Atmospheric Environment, 39(20):3697-3709, 2005.
Jaworek, A., Krupa, A., and Krupa, T. “Modern electrostatic devices and methods for exhaust gas cleaning: A brief review”, Journal of Electrostatics, 65(3): 133-155, 2007.
Jones, A.P. “Indoor Air Quality and Health”, Atmospheric Environment, 33(28): 4535-4564, 1999.
Jones, N.C., Thornton, C.A., Mark, D., and Harrison, R.M. ”Indoor/Outdoor Relationships of Particulate Matter in Domestic Homes With Roadside, Urban, and Rural Locations,” Atmospheric Environment, 34(16): 2603-2612, 2000.
Kappos, A.D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., Koch, E., Krause, G.H.M., Kreyling, W.G., Rauchfuss, K., Rombout, P., Schulz-Klemp, V., Thiel, W.R., and H.E. “Health effects of particles in ambient air”, International Journal of Hygiene and Environmental Health, 207(4): 399-407, 2004.
Kennedy, I.M. “The health effects of combustion-generated aerosols”, Proceedings of the Combustion Institute, 31(2): 2757-2770, 2007.
Kim, C.S., Bao, L., Okuyama, K., Shimada, M., and Niinuma, H. “Filtration Efficiency of A Fibrous Filter for Nanoparticles”, Journal of Nanoparticle Research, 8(2): 215-221, 2006.
Kim, J.C., Otani, Y., Noto, D., Namiki, N., and Kimura, K. “Initial Collection Performance of Resin Wool Filters and Estimation of Charge Density”, Aerosol Science and Technology, 39(6): 501–508, 2005.
Kim, S., Harrington, M., and Pui, D. “Experimental Study of Nanoparticles Penetration Through Commercial Filter Media”, Journal of Nanoparticle Research, 9(1):117–125, 2007.
Kittelson, D.B. “Engines and Nanoparticles: a Review”, Journal of Aerosol Science, 29(5-6): 575-588, 1998.
Klepis, N.E., Nelson, W.C., OTT, W.R., Robinson, J.P., Tsang, A.M., Switzer, p., Behar, J.V., Hern, S.C., and Engelmann, W.H. “The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants”, Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231-252, 2001.
Koskela, R.S., Mutanen, P., Sorsa, J.A., and Klockars, M. "Respiratory Disease and Cardiovascular Morbidity”, Occupational and Environmental Medicine, 62(9): 650-655, 2005.
Kreyling, W.G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G., and Ziesenis, Z. “Translocation of Ultrafine Insoluble Iridium Particles From Lung Epithelium to Extrapulmonary Organs Is Size Dependent But Very Low“, Journal of Toxicology and Environmental Health, Part A, 65(20): 1513-1530, 2002. 
Krupa, A., Jaworek, A., Lackowski, M., Czech, T., and Luckner, J. “Efficiency of Particle Charging by an Alternating Electric Field Charger”, Journal of Electrostatics, 63(6-10): 673–678, 2005.
Kulkarni, P., Namiki, N., Otani, Y., and Biswas, P. “Charging of Particles in Unipolar Coronas Irradiated by In-Situ Soft X-rays: Enhancement of Capture Efficiency of Ultrafine Particles”, Journal of Aerosol Science, 33(9): 1279-1296, 2002.
Kyle, A.D., Woodruff, T.J., Buffler, P.A., and Davis, D.L. “Use of an Index To Reflect the Aggregate Burden of Long-Term Exposure To Criteria Air Pollutants in the United States”, Environmental Health Perspectives, 110(1): 95-102, 2002.
Lackowski, M., Adamiak, K., Jaworek, A., and Krupa, A. “Electrostatic Charging of Particulates by Ionic Current in Alternating Electric Field”, Powder Technology, 135-136(2): 243-249, 2003.
Lackowski, M., Jaworek, A, and Krupa, A. “Current–voltage characteristics of alternating electric field charger”, Journal of Electrostatics, 58(1): 77-89, 2003.
Lee, B.U., Yermakov, M., and Grinshpun, S.A. “Removal of Fine and Ultrafine Particles from Indoor Air Environments by the Unipolar Ion Emission,” Atmospheric Environment, 38(29): 4815-4823, 2004.
Lee, J.K., Kim, S.C., Shin, J.H., Lee, J.E., Ku, J.H., and Shin, H.S. “Performance Evaluation of Electrostatically Augmented Air Filters Coupled with a Corona Precharger”, Aerosol Science and Technology, 35(4): 785-791, 2001. 
Lehtimäki, M., and Heononen, K. “Reliability of Electret Filters”, Building and Environment, 29(3): 353-355, 1994.
Li, Z., Hulderman, T., Salmen, R., Chapman, R., Leonard, S.S., Young, S.H., Shvedova, A., Luster, M.I., and Simeonova, P.P. “Cardiovascular Effects of Pulmonary Exposure to Single-Wall Carbon Nanotubes”, Environmental Health Perspectives, 115(3): 377-382, 2007.
Lieberman, M.A., and Lichtenberg, A.J. “Principles of plasma discharges and materials processing”, John Wiley and Sons, Interscience publication, Hoboken, New Jersey, Second Edition, 2005.
Matson, U. “Indoor and Outdoor Concentrations of Ultrafine Particles in Some Scandinavian Rural and Urban Areas”, Science of The Total Environment, 343(1-3): 169-176, 2005.
Mayya, Y.S., Sapra, B.K., Khan, A., and Sunny, F. “Aerosol Removal by Unipolar Ionization in Indoor Environments,” Journal of Aerosol Science, 35(8): 923-941, 2004.
Mizuno, A. " Electrostatic Precipitation”, IEEE Dielectrics and Electrical Insulation Society, 7(5): 615–624, 2000.
National Institute for Occupational Safety and Health (NIOSH), “Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne, Chemical, Biological, or Radiological Attacks”, DHHS (NIOSH), Publication no.2003-136, 2003.
Niewulis, A., Podliński, J., and Mizeraczyk, J. “Electrohydrodynamic Flow Patterns in a Narrow Electrostatic Precipitator with Longitudinal or Transverse Wire Electrode”, Journal of Electrostatics, 67(2-3): 123–127, 2009.
Oberdörster, G., Ferin, J., and Lehnert B.E. “Correlation Between Particle Size, in Vivo Particle Persistence, and Lung Injury”, Environmental Health Perspectives, 102(5): 173–179, 1994.
Oberdörster, G., Oberdörster, E., and Oberdörster, J. “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles”, Environmental Health Perspectives, 113(7): 823–839, 2005.
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., and Cox, C. “Extrapulmonary Translocation of Ultrafine Carbon Particle Following Whole-Body Inhalation Exposure of Rats”, Journal of Toxicology and Environmental Health, Part A, 65(20): 1531 – 1543, 2002.
Petrt, T.M., Heitbrink, W.A., Evans, D.E., Slavin, T.J., and Maynard, A.D., “The Mapping of Fine and Ultrafine Particle Concentrations in an Engine Machining and Assembly Facility”, Annals of Occupational Hygiene, 50(3): 249-257, 2006.
Pfefferkorn, F.E., Bello, D., Haddad, G., Park, J.Y., Powell, M., Mccarthy, J.,Bunker, K.L., Fehrenbacher, A., Jeon, Y., Virji, M.A., Gruetzmacher, G., and Hoover, M.D. “Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum”, Annals of Occupational Hygiene, 54(5):486-503, 2010. 
Podliński, J., Niewulis, A., and Mizeraczyk, J. “Electrohydrodynamic Flow and Particle Collection Efficiency of a Spike-Plate Type Electrostatic Precipitator”, Journal of Electrostatics, 67(2-3): 99-104, 2009.
Pope III, C.A., and Dockery, D.W. “Health effects of fine particulate air pollution: lines that connect”, Journal of the Air and Waste Management Association, 56: 709-742, 2006.
Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., and Thurston, G.D. “Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine particulate Air Pollution”, The Journal of the American Medical Association, 287(9): 1132-1141, 2002.
Romay, F.J., Liu, B.Y.H., and Chae, S.J. “Experimental Study of Electrostatic Capture Mechanisms in Commercial Electret Filters”, Aerosol Science and Technology, 28(3): 224–234, 1998.
Saiyasitpanich, P., Keener, T.C., Lu, M., Khang, S.J., and Evans, D.E. “Collection of Ultrafine Diesel Particulate Matter (DPM) in Cylindrical Single-Stage Wet Electrostatic Precipitators”, Environment Science Technology, 40(24): 7890-7895, 2006.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D. “Particulate Air Pollution and Acute Health Effects”, The Lancet, 345(8943): 176-178, 1995.
Semmler, M., Seitz, J., Erbe, F., Mayer, P., Heyder, J., Oberd rster, G., and Kreyling W.G. “Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles from the Rat Lung, Including Transient Translocation into Secondary Organs”, Inhalation Toxicology, 16(6&7): 453-459, 2004.
Shi, J.P., Evans, D.E., Khan, A.A., and Harrison, R.M. “Sources And Concentration of Nanoparticles (<10 nm diameter) In the Urban Atmosphere”, Atmospheric Environment, 35(7): 1193-1202, 2001.
Shvedova, A.A., Kisin, E.R., Mercer, R., Murray, A.R., Johnson, V.J., Potapovich, A.I., Tyurina, Y.Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A.F., Antonini, J., Evans, D.E., Ku, B.K., Ramsey, D., Maynard, A., Kagan, V.E., Castranova, V., and Baron, P. “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice”, Am J Physiol Lung Cellular Molecular Physiology, 289(5): 698-708, 2005.
Steffens, J., and Coury, J.R. “Collection Efficiency of Fiber Filters Operating on the Removal of Nano-sized Aerosol Particles: I-Homogeneous Fibers”, Separation and Purification Technology, 58(1): 99-105, 2007a.
Steffens, J., and Coury, J.R. “Collection Efficiency of Fiber Filters Operating on the Removal of Nano-sized Aerosol Particles II. Heterogeneous Fibers”, Separation and Purification Technology, 58(1): 106-112, 2007b.
Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P., and Heyder, J. “Pulmonary and Systemic Distribution of Inhaled Ultrafine Silver Particles in Rats”, Environmental Health Perspectives, 109(4): 547–551, 2001.
Tang, I.N., Fung, K.H., Imre, D.G., and Munkelwitz, H.R. “Phase transformation and metastability of hygroscopic microparticles”, Aerosol Science and Technology, 23(3): 443-453, 1995. 
Wang, C.S. “Electrostatic Forces in Fibrous Filters—a Review”, Powder Technology, 118(1-2): 166–170, 2001.
Weingartner, E., Keller, C., Stahel, W.A., Burtscher, H., and Baltensperger, U. “Aerosol Emission in a Road Tunnel”, Atmospheric Environment, 31(3): 451-462, 1997.
Wiebert, P., Sanchez-Crespo, A., Falk, R., Philipson, K., Lundin, A., Larsson, S., M ller, W., Kreyling, W.G., Svartengren, M. “No Significant Translocation of Inhaled 35-nm Carbon Particles to the Circulation in Humans”, Inhalation Toxicology, 18(10): 741-747, 2006.
Wiebert, P., Sanchez-Crespo, A., Seitz, J., Falk, R., Philipson, K., Kreyling, W.G., M ller, W., Sommerer, K., Larsson, S., and Svartengren, M. “Negligible Clearance of Ultrafine Particles Retained in Healthy and Affected Human Lungs”, European Respiratory Journal, 28(2): 286-290, 2006.
Yang, S., and Lee, G. W. M. “Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols”, Journal of Aerosol Science, 36(4): 419-437, 2005.
Yao, S., Fushimi, C., Madokoro, K., and Yamada, K. “Uneven dielectric barrier discharge reactors for diesel particulate matter removal”, Plasma Chem Plasma Process, 26(5): 481-493, 2006.
Ye, D., Gao, D., Yu, G., Shen, X., and Gu, F. “An Investigation of the Treatment of Particulate Matter from Gasoline Engine Exhaust Using Non-thermal Plasma”, Journal of Hazardous Materials, 127(1-3): 149-155, 2005.
Yeh, H.C., Muggenburg, B.A., and Harkema, J.R. “In Vivo Deposition of Inhaled Ultrafine Particles in the Respiratory Tract of Rhesus Monkeys”, Aerosol Science and Technology, 27(4): 465- 470, 1997.
Yu, J.I., Kim, K.J., Chang, H.K., Song, K.S., Han, K.T., Han, J.H., Maeng, S.H., Chung, Y.H., Park, S.H., Chung, K.H., Han, J.S., and Chung, H.K. “Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague–Dawley rats exposed to a novel welding fume generating system”, Toxicology Letters, 116(1-2): 103-111, 2000.
Yun, K.M., Hogan Jr., C.J., Matsubayashi, Y., Kawabe, M., Iskandar, F., and Okuyama, K. “Nanoparticle Filtration by Electrospun Polymer Fibers”, Chemical Engineering Science, 62(17): 4751-4759, 2007.
Zhang, Q., Kusaka, Y., Zhu, X., Sato, K., Mo, Y., Kluz, T., and Donaldson, K. “Comparative Toxicity of Standard Nickel and Ultrafine Nickel in Lung after Intratracheal Instillation”, Journal of Occupational Health, 45(1): 23-30, 2003.
Zhao, Z.M., and Robert, P. “A Semi-Empirical Approach to Predict the Total Collection Efficiency of Electrostatic Precipitators”, Chemical Engineering Communications, 148(1): 315–331, 1996.
Zukeran, A., Looy, P.C., Chakrabarit, A., Berezin, A.A., Jayaram, S., Ito, T., and Chang, J.S. “Collection Efficiency of Ultrafine Particles by an Electrostatic Precipitator under Dc and Pulse Operating Modes”, IEEE Transaction on Industrial Applications, 35(5): 1184-1191, 1999.
山崎耕造、沈文訓譯,「圖解電漿入門」,世茂出版社,初版,2007。
尹邦躍,張勁燕,「奈米時代」,五南圖書出版股份有限公司,初版,2002。
王秋森、陳時欣,「氣膠技術學」,新文京開發出版股份有限公司,第二版,2005 (第九章,P161~174)。
何薇如,「微粒空氣汙染物對疾病動物之心肺毒性研究」,國立台灣大學公共衛生學院職業醫學與工業衛生研究所,碩士論文,2006。
吳承翰,「工作場所奈米微粒的暴露研究」,國立交通大學環境工程所,碩士論文,2007。
吳俊哲、張立德、林樹榮、李怡萱、楊景盛,「觸媒氧化技術淨化室內空氣品質設備開發」,96 年度「環保科技育成中心計畫」,行政院環境保護署。
吳致呈,「空氣負離子控制室內空氣汙染物之研究」,國立台灣大學環境工程學研究所,博士論文,2006。
李偉量,「大氣微粒對心肌受損大鼠之心血管毒性研究」,國立台灣大學公共衛生學院職業醫學與工業衛生研究所,碩士論文,2008。
李灝銘,以低溫電漿去除揮發性有機物之研究,國立中央大學環境工程學研究所,博士論文,2001。
赤崎正則、賴耿陽譯,「電漿工學的基礎」,復文出版社,初版,1986。
侯冠廷,「空氣清淨機測試方法評估」,國立臺灣大學公共衛生學院職業醫學與工業衛生研究所,碩士論文,2006。
室內空氣品質資訊網,http://aqp.epa.gov.tw/iaq/page4-1.htm,2010。
張士昱,「易潮解無機氣膠含水特性之研究」,國立中央大學環境工程學研究所,博士論文,2002。
張木彬、李灝銘,「電漿處理技術於環境工程之應用與發展趨勢」,電漿處理在環境工程之應用技術研習會論文集,七月,2007。
張家仁,「常壓電漿接枝甲基丙烯酸聚乙二醇酯在聚四氟乙烯薄膜之抗生物沾黏材料運用與探討」,中原大學化學工程學系,碩士論文,2009。
張舒婷,「I. 中部科學工業園區附近民眾呼吸道健康之調查 II. 中部科學工業園區附近住家室內懸浮微粒濃度之測定」,中國醫藥大學環境醫學研究所,碩士論文,2005。
郭廷威、黃正中,「病態綠建築的空氣汙染轉機-室內空氣品質全面整合方案」,中華水電冷凍空調月刊,七月刊,2007。
郭崇文、黃盛修、蘇春熺、林文印、張木榮,「小型交流電場靜電集塵器過濾特性之研究」,第十三屆國際氣膠科技研討會,2006。
陳仕昇,「空氣負離子對影印室懸浮微粒PM2、PM10及臭氧去除效率與分佈影響之研究」,國立台北科技大學建築與都市設計研究所,碩士論文,2007。
陳光華,鄧金祥,「奈米薄膜技術與應用」,五南圖書出版股份有限公司,初版,2005。
陳春萬、黃盛修,「纖維性濾材與靜電集塵器對奈米微粒之收集效率探討」,勞工安全衛生研究所勞工安全衛生簡訊,83期,2007。
曾偉綸,液向非熱電漿技術製備奈米級含氮二氧化鈦於可見光下降解有機汙染物之研究,國立台北科技大學環境工程與管理研究所,碩士論文,2009。
黃盛修,「小型靜電集塵器之過濾及負載特性之研究」,國立台灣大學職業醫學與工業衛生研究所,博士論文,2001。
黃盛修、陳萬春、葉文裕,「市售防塵口罩濾材對奈米微粒捕集效濾研究」,勞工安全衛生研究季刊,12卷,第三期,264-274,2004。
廖俊南,添加劑對高週波電漿轉化氮氧化物為氮氣之影響,高雄應用科技大學化學工程學研究所,碩士論文,2005。
趙純興,「非熱電漿結合濾材對生物氣膠控制之研究」,嘉南藥理科技大學環境工程與科學系研究所,碩士論文,2009。
蔡政賢,含硫氣體化合物於高週波電漿中之反應機制,博士論文,成功大學環境工程研究所,2001。
鄭尊仁,「奈米微粒與健康風險」,科儀新知,28卷,第五期,2005。
鄭尊仁、葉哲雯、張淳昭,「微粒空氣污染物特性、毒性和健康風險之研究--子計畫 四:微粒空氣污染物動物心血管毒性研究」,國立臺灣大學公共衛生學院職業醫學與工業衛生研究所,行政院國家科學委員會專題研究計畫,2006。
謝宗樺,高週波及微波電漿轉化甲烷為合成氣之研究,高雄應用科技大學化學工程學研究所,碩士論文,2004。
謝梃蘊,「考量健康風險評估之室內空氣品質指標之研擬」,國立台北科技大學環境規劃與管理研究所,碩士論文,2003。
蘇慧貞(2002),「室內/室外空氣污染物之國民健康風險評估及管制成本效益分析」,行政院環保署報告。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top