(35.175.212.130) 您好!臺灣時間:2021/05/17 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃秀華
研究生(外文):Hsiu-Hua
論文名稱:評估不同組成比例的Si-Ti光觸媒於可見光下對一氧化碳之去除反應
論文名稱(外文):Evaluating the CO removal over Si-Ti photocatalyst with different Si/Ti ratios under visible light
指導教授:盧啟元盧啟元引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:公共衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:74
相關次數:
  • 被引用被引用:1
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於CO等氣狀污染物的去除,一般多以氧化鋁擔持過渡金屬觸媒來進行氧化催化作用,雖其催化效果佳,但需在高溫的環境下方能進行,使用條件較受限制。相對於傳統熱處理型觸媒,光觸媒則有簡單、易操作的特點,在一般室溫、室壓下即可操作,不同於傳統觸媒,不需加熱即可進行反應,可減少能源的消耗,提高觸媒的廣用性。
目前研究指出,應用於氣相催化反應之二氧化鈦光觸媒,以往大多將其附載於玻璃基材上以增加光源的穿透性。然而玻璃為緻密性的低孔隙率材料,無法提供高表面積使二氧化鈦達較佳的分散性,因而使光催化反應受到限制。因此,在本研究中以水熱法製備30%Si-70%Ti、70%Si-30%Ti及100%Ti光觸媒,再輔以微波法擔持金屬製備Pt/Si-Ti光觸媒,接著以CO為反應氣體進行光催化反應,探討不同Si-Ti比例、金屬Pt的影響,不同反應光源等因子的影響,而製備所得的觸媒以電子顯微鏡FESEM、TEM觀察觸媒顆粒大小及擔體表面上金屬顆粒分布情形,以XRD分析結晶物種,以供探討其物、化結構性質對光催化活性影響之佐證。
實驗結果顯示,以水熱法改質製備之Si-Ti光觸媒主要結晶物種為rutile,於光催化反應下,金屬Pt之添加有助於大幅提升觸媒反應效率,於可見光與紫外光為光源時,30%Si-70%Ti與100%Ti之Pt/Si-Ti光觸媒對CO皆可達99%的去除效率,本研究最佳反應觸媒與反應條件為: Pt/30%Si-70%Ti,CO 500 ppm,10%O2,空間速度37500 h-1,常溫。


Al2O3 supported catalyst has been used as oxidative catalyst for CO gaseous pollutant removal widely. Although Al2O3 supported catalyst shows the good catalytic activity, the catalytic oxidation is limited with high reaction temperature required. By comparing with a conventional heat-treated catalyst, the photocatalyst may operate at room temperature in the atmospheric pressure without heating. The photocatalytic reaction is a simple and operating easily method, and then the application of photocatalyst is broadly with less energy consuming.
Recently, the researches showed that the TiO2 photocatalyst were supported on the silica substrate over gaseous catalytic reaction and the penetration coefficient of light was improved. However, the porosity of silica substrate was low. The low specific surface area contributed to bad dispersion of TiO2, and the photocatlytic activity was decreased. This study prepared three catalysts (30%Si-70%Ti, 70%Si-30%Ti, 100%Ti) by the hydrothermal method, and then Pt/Si-Ti catalyst was prepared by the microwave heating method. CO was chosen as the reactant for photocatalytic reaction, and the different reaction parameters were studied, such as different ratio of Si/Ti, the effect of Pt, and different light sources. Catalyst properties were analyzed by X-ray powder diffractometer (XRD), Field Emission SEM (FESEM), and Trasmission electron microscope (TEM). FESEM and TEM were used to study the particle size and dispersion of catalysts, and the crystal phase was analyzed by the XRD.
The experimental results indicated that the main crystal phase of Si-Ti photocatalyst preparted by the hydrothermal method was rutile. For photocatalytic reaction, the catalytic activity was improved by the metal Pt. Under UV light or visible light, 99% CO removal efficiency was carried out over Pt/30%Si-70%Ti or Pt/100%Ti. The optimum reaction conditions for CO removal over Pt/30%Si-70%Ti were O2 concentration 10%, room temperature, CO concentration 500 ppm, and space velocity 375,000 h-1.


致謝II
摘要IV
AbstractVI
目錄VII
表目錄IX
圖目錄X
第一章前言 1
1.1 研究緣起 1
1.2研究動機與目的 2
1.3研究架構 3
第二章文獻回顧 5
2.1一氧化碳(CO)的生成與危害 5
2.1.1相關規範法令 5
2.2觸媒 7
2.2.1觸媒的基本原理 7
2.2.2觸媒老化及衰退 8
2.3熱觸媒 10
2.4光觸媒 10
2.4.1光觸媒的介紹 10
2.4.2能隙(band gap)12
2.4.3光催化原理 13
2.4.4 TiO2奈米光觸媒之物理性質 15
2.4.5 TiO2奈米光觸媒之光化學催化反應 18
2.4.6 影響光觸媒氧化還原反應因素 20
2.5光觸媒之改質相關文獻 21
2.5.1添加貴重金屬 23
2.5.2複合式半導體光觸媒 24
2.5.3摻雜過渡金屬 25
2.5.4 添加SiO2 28
2.5.5表面敏化 29
2.6中孔洞分子篩 29
2.6.1 SBA 系列 31
2.6.2 SBA結構 33
2.7 Pt(金屬)的介紹 34
2.8文獻總結及研究方向34
第三章實驗設備與方法 36
3.1 SAB-15擔體之製備 36
3.2 Si-Ti光觸媒的製備37
3.3 Pt/Si-Ti光觸媒的製備38
3.4光觸媒特性分析39
3.4.1表面分析-場發射掃描式電子顯微鏡(FESEM) 39
3.4.2微結構分析-穿透式電子顯微鏡(TEM) 40
3.4.3晶體結構分析-X射線繞射儀(XRD) 41
3.5光觸媒一氧化碳活性測試 42
3.6實驗試程規劃 43
第四章 結果與討論 45
4.1 不同比例Si-Ti與Pt/Si-Ti觸媒之物化特性 45
4.1.1 FESEM分析 45
4.1.2 TEM分析 50
4.1.3 XRD分析 54
4.2 活性測試 56
4.2.1 探討於UV下不同比例的Si-Ti觸媒對CO之去除效率 56
4.2.2 探討於UV下不同比例的Pt/Si-Ti觸媒對CO之去除效率 57
4.2.3探討於可見光下不同比例的Pt/Si-Ti觸媒對CO之去除效率 59
4.2.4 探討於可見光下Pt/Si-Ti於不同觸媒反應量下對CO之去除效率 60
4.2.5 探討於可見光下Pt/Si-Ti於不同氣體反應流速下對CO之去除效率 62
4.2.6 探討於可見光下Pt/30%Si-70%Ti長時間對CO之去除效率 63
第五章 結論與建議 64
5-1結論 64
5-2 建議 66
參考文獻 68


﹝1﹞http://www.epa.gov/air/urbanair/6poll.html.
﹝2﹞Smith, K. R., Biofuels, air pollution, and health: a global review,Kluwer Academic Pub, 1987.
﹝3﹞Graebel, T. E., Chemical compounds in the atmosphere, 1978.
﹝4﹞Warneck, P., Chemical changes of the atmosphere on geological and recent time scales, Global atmospheric chemical change, edited by C. N. Hewitt and W. T. Sturges,chap.1, Chapman & Hall, 1994.
﹝5﹞Thompson, A. M., The oxidizing capacity of the earth’s atmosphere: Probable past and future changes, Science, 256, 1157-1165, 1992.
﹝6﹞Li,X.,Xiong,R.C., Wei,G., 2008.S-N co doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catalysis Letters,125,104-109.
﹝7﹞Chang,Y.M., “Effect of Incineration Temperature on CO Emission during Sludge Incineration in CFBI”J.of The Chin. Environ.Eng., 4(4) ,267-274,1994.
﹝8﹞行政院環境保護署。
﹝9﹞林有銘,「無所不在的環境清潔工-奈米光觸媒」,科學發展,第四o八期,24-31,2006。
﹝10﹞Octave Levenspiel,“Chemical Reatcion Engineering.third edition”,Wiley,1999.
﹝11﹞陳冠豪,以溶膠凝膠法製備MnOx/Al2O3觸媒焚化處理三氧乙烯之研究,國立成功大學環境工程學系碩士論文,2003。
﹝12﹞翁澤民,觸媒焚化處理氣相甲苯之研究,國立中山大學環境工程研究所碩士論文,2003。
﹝13﹞盧啟元,中孔洞擔體觸媒於空氣污染防治上之應用,國立中興大學環境工程研究所博士論文,2007。
﹝14﹞Fujishima,A.,Honda K., “Electorchemical photolysis of water at semiconductor electorde”,Nature,238,37,1972.
﹝15﹞Sakai H., Ito E., Cai R., Yoshioka T., Hashimoto K. and Fujishima A.,Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles, Biochimica et Biophysica Acta-General Subjects 1201(2): 259-265 , 1994.
﹝16﹞蕭宏,半導體製程技術導論,台灣培生教育出版,2002。
﹝17﹞垰田博史,「光觸媒圖解」,商周出版社,2003。
﹝18﹞Beck JS., Vartuli JC., Roth WJ., Leonowicz ME., Kresge CT., Schmitt KD., Chu CTW., Olson DH. and Sheppard EW., A new family of mesoporous molecular sieves prepared with liquid crystal templates,Journal of the American Chemical Society 114(27): 10834-10843,1992.
﹝19﹞資料來源:http://www.photocatalyst-aon-net.com.
﹝20﹞Yates,J.R.,Eng,J.,Mccormack,A.L.,Moji,T.,Pious,D.,1995. Studies of immunological pathways by Using Tandem Mass-Spectrometry andDatabase Searching.Abstracts of Papers of the Ametican Chemical Society,209,122-ANYL.
﹝21﹞Hiroshi T, 光觸媒圖解,商周出版,2003,。
﹝22﹞Park DW., Oh SM., Kim SS., Lee JE. and Ishigaki T., Effect ofadditiveson photocatalytic active of titanium dioxide powderssynthesized by thermal plasma, Thin Solid Films 453: 252-258,2003.
﹝23﹞Diebold U., The surface science of titanium dioxide, Surface Science Reports 48: 53-229,2003.
﹝24﹞Fujishima A., Hashimoto K. and Watanabe T., TiO2 photocatalysis fundamentals and application, Badger Kennel Club 124-126, 1999.
﹝25﹞Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E. and HidakaH., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology A 85(3): 247-255 ,1995.
﹝26﹞Borgarello E., Kiwi J., Gratzel M., Pelizzetti E. and Visca M., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, Journal of the American Chemical Society 104(11): 2996-3002,1982.
﹝27﹞P. W. Chou, S. Treschev, P. H. Chung and C.-L.Cheng. “Observation of carbon-containing nanostructured mixed titania phases for visible-light photocatalysts“,Applied physics Letters,2006,89,131919.
﹝28﹞Eqling GA. and Lin C., Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere 46(4): 561-570 ,2002.
﹝29﹞Gratzel M., Ultrafast colour displays, Nature 409(6820): 575-576
,2001.
﹝30﹞Parkin,I.P. and Palgrave.r,g.,“self-cleaning coatings”Journal of aterials Chemistry,15,2005,pp.1689-1695.
﹝31﹞Rosana.M.Alberici and Wilson.F.Jardim., Applied Catalysis B: Envi-ronmental Vol.14,,1997,pp.55-88.
﹝32﹞M.Anpo.and T.Shima.and S.Kodama,and Y.Kubokawa., J.phy.chem., vol.91,1987,pp.4305.
﹝33﹞J.Zhao and X.D.Yang.Build.Environ.,vol.38,2003,pp.645.
﹝34﹞Fu, X. F.; Zeltner, W. A.; Anderson, M. A., Gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts, Applied Catalysis B: Environmental, 6, 209-224(1995).
﹝35﹞Davis,A.P.,Hung,C.P.,“The Photocatalytic Oxidation of Sulfur-containing Organic compounds Using Cadmium Sulfide and the Effe-ct on CdS Photocorrosion”,Water Research,25,10,1273-1278,1991.
﹝36﹞Wold,A.,“Photocatalytic properties of TiO2”Chem Mater.,5,280,1993.
﹝37﹞He,C., Yu,Y., Zhou,C.H., Hu,X.F., 2002.Structure and Photocatalytic activities of Ag/TiO2 thin films. Journal of Solid State Chemistry,179,1171-1176.
﹝38﹞Mizukoshi,Y., Makise,Y., Shuto,T., Hu,J., Tominaga A.,Shironita,S., Tanabe.S., “Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method:photocatalytic productionof hydrogen from an aqueous solution of ethanol”,Ultrasonics Sonochemistry,14,387-392,2007.
﹝39﹞Serpone,N.,Maruthamuthu,P.,Pichat,P.,Pelizzetti,E.,Hidaka,H.,
“Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors”,Journal of Photochemistry and Photobiology A:Chemistry,85,247-255,1995.
﹝40﹞Kanai,N,Nuida,T.,Ueta,K.,Hashimoto,K,Watanabe,T.,Ohsaki,H.,
2004.Photocatalytic efficiency of TiO2/SnO2 thin film Stacks Prepared by DC magnetron sputtering.Vacuum.74,723-727.
﹝41﹞Chen,X,Burda,C.,2004.Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles.The Journal of Physical Chemistry B,108,15446-15449.
﹝42﹞潘建呈,吳紀聖“具可見光應答之Cr/TiO2奈米光觸媒” J.Chin.Colloid&Interface Soc.,2004,26,175-182.
﹝43﹞Reddy.E.P.,Sun,B.,Smirniotis P.G.,”Transition metal modified TiO2-loaded MCM-41 catalysts for visible-and UV-light driven photodegradation of aqueous organic pollutants”,Journal of Physical Chemistry B,108,17198-17205,2004.
﹝44﹞Kowakae,Higashi-Osaka“Cobalt ion-doped TiO2 photocatalyst response to visible light ”.Journal of colloid and Interface Science,224,202-204,2000.
﹝45﹞Vamathevan,V.,Tse,H.,Amala,R.Lowb,G,McEvoy,S.,“Effects of Fe3+ and Ag+ Ions on the photocatalytic Degradation of Sucrose in Water”,Catalysis Today,68,201-208,2002.
﹝46﹞Zhu,Jiefang,Feng Chen,Jinlong Zhang,Haijun Chen,Masakazu Aupo. “Fe3+- TiO2 photocatalysts prepared by combining sol-gel method whit hydrothermal treatment and their characterization”Journal of Photochemistry and Photobiology A:Chemistry,180,196-204,2006.
﹝47﹞Tseng,I.H.,Chang,W.C.,WU,C.S.J.,“Effects of sol-gel procedures on the photocatalysis of Cu/ TiO2 in CO2 photoreduction”Journal of catalysis,221,432-440,2004.
﹝48﹞Pan,C.C.,Wu,C.S.J.,“Visible-light response Cr-doped TiO2 nano photocatalysts”,Journal of Chinese Colloid and Interface Society,26,175-182,2004.
﹝49﹞http://ama-semi.com.tw/index.htm#parent/Photocatalystic.Silica.Gel.
﹝50﹞Chemistry&Chemical Reactivity,J.C.Kotz and P.Treichel,Jr.,ed.,4thEd.(Orlando,Florida:Harcourt Brace&Company,1999),pp.828-831.
﹝51﹞Chatterjee,D.,Mahata,A.,2001.Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light.Applied Catalysis B-Environmental,33,119-125.
﹝52﹞Cho,Y.,Choi,W.,“Visible Light-induced Reactions of Humic Acids on TiO2”,Journal of Photochemistry and Photobiology A:Chemistry,148,129-135,2002.
﹝53﹞Ying,J.Y.;Mehnert,C.P.;Wong,M.S.“Synthesis and applications of supramolecular-templated mesoporous materials.”Angew.Chem.Int.Ed.,38.56-77,1999.
﹝54﹞Soler-Illia,G.J.d.A.A.;Crepaldi,E.L,;Grosso,D,;Sanchez.C.“Block copolymer-templated mesoporous oxides”Curr.Opin,Colloid Interface Sci.,8,109-126,2003.
﹝55﹞Zhao,D.;Huo,Q.;Feng.J.;Chmelka B.F.;Stucky,G.D.“Nonionic Triblock and Star Diblock Copolymer and Oligomeric surfactant Synthese of Highly Ordered.Hydrothermally stable,Mesoporous Silica Structures,”J.Am.Chem.Soc.,120,24,6024-6036,1998.
﹝56﹞朱昱璋,“二氧化鈦奈米管擔載金、鉑觸媒進行紫外光甲醇重組產氫反應”,中央大學化學工程與材枓工程研究所碩士論文(2006)
﹝57﹞Qiuye Li,Ke Wang,Shunli Zhang,Min Zhang,Jianjun Yang,Zhensheng Jin,Effect of photocatalytic activity of CO oxidation on Pt/TiO2 by strong interaction between Pt and TiO2 under oxidizing atmosphere,2006.
﹝58﹞Hajime Iida*,Kentaro Kondo,Akira Igarashi,Effect of Pt Precursors on catalytic activity of Pt/ TiO2(rutile)for water gas shift reaction at low-temperature,2006.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top