(18.204.227.34) 您好!臺灣時間:2021/05/19 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝明儒
研究生(外文):Ming-Ju
論文名稱:第一部分:以碳酸酐異構酶II、IX及XII RNA干擾技術探討對人類乳癌細胞侵襲及移動能力的影響第二部分:C型肝炎病毒套膜蛋白E2導致肝臟纖維化機制探討
論文名稱(外文):Part I: The inhibition of migration and invasion in human breast cancer cells by carbonic anhydrase II, IX and XII RNA interferencePart II: Molecular mechanism of hepatitis C virus E2-induced hepatic fibrosis
指導教授:謝易修謝易修引用關係邱慧玲邱慧玲引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:184
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
碳酸酐酶 (carbonic anhydrase;CA)是一種含鋅離子的金屬酵素,包含許多不同的異構酶,其功能主要是在於催化細胞內的酸性物質並維持細胞內的衡定。而其中存在於細胞質的CA II與細胞膜上的CA IX和CA XII則是被認為對於影響細胞內碳酸根離子的衡定以及維持細胞外pH值的正常最主要的影響因子之一。在先前的研究證實,在60個乳癌患者中,CA II的蛋白表現和CA活性在腫瘤部位有顯著的上升(P<0.001),而在mRNA層次也是和蛋白質表現有相同的結果。另外在探討乳癌組織中CA II活性與其臨床上一些數據的相關性分析也發現CA II活性和腫瘤大小有顯著的相關性並且也證實CA IX和CA XII在腫瘤發生的過程中是扮演著重要的角色。然而目前已經有許多的研究結果針對CA II以及CA IX對於癌細胞侵襲以及移動的能力進行探討,但是針對於CA XII的研究結果則尚未很清楚;根據先前的文獻中提到,CA XII的表現量在臨床手術預後情形的觀察追蹤上,是一個用來推測乳癌細胞侵襲的一個很好的指標。因此,在本研究過程中主要是先探討CA II、CA IX以及CA XII在不同的乳癌細胞中表現程度的差異性以及對於乳癌細胞侵襲以及移動能力的影響,並進一步的探討影響癌細胞侵襲以及移動能力的相關路徑。在研究中主要針對三株侵襲和移動能力程度不同的乳癌細胞進行研究,分別利用CA II、CA IX以及CA XII的RNA干擾技術來探討對於乳癌細胞侵襲以及移動能力的影響。結果發現,分別對MCF-7、Hs578T以及MDA-MB-231這三株乳癌細胞進行CA II、CA IX以及CA XII RNA干擾之後,以CA XII RNA干擾對於MDA-MB-231的侵襲以及移動能力的抑制最為明顯;進一步的利用轉殖成功後能持續穩定表現CA XII RNAi的MDA-MB-231細胞進行研究,結果發現會藉由抑制p38的磷酸化進而減弱MDA-MB-231細胞的侵襲以及移動能力;最後在活體動物的實驗中,將會穩定表現CA XII RNAi的MDA-MB-231細胞接種到動物體內觀察腫瘤大小以及重量。結果證實,在持續性的CA XII RNA干擾下,無論是腫瘤的大小以及重量都有明顯受到抑制的情形。根據這些實驗的結果證實,CA XII在MDA-MB-231乳癌細胞的侵襲以及移動能力上確實扮演著重要的角色。因此,在未來的治療腫瘤的方法上,對於CA XII有明顯表現的癌細胞當中,RNA干擾技術或許可以提供另一種新的應用方法。
第二部分
慢性肝炎及肝硬化一直是影響國人健康及造成死亡原因的主要原因之一。除了B型肝炎之外,C型肝炎也是主要引起慢性肝病的原因之一。C型肝炎是由C型肝炎病毒(hepatitis C virus;HCV)感染所引起的慢性肝臟疾病,與肝硬化及肝癌有著因果的關連性。文獻指出C型肝炎病毒套膜蛋白E2與肝臟星狀細胞膜上接受器CD81結合後,會藉由活化ERK/MAPK的途徑活化轉錄因子AP-2的活性,進而導致matrix metalloproteinase(MMP)-2的蛋白表現量以及活性上升,顯示E2蛋白與HCV導致的纖維化有關。另外,之前的文獻證實肝星狀細胞與肝纖維化的產生具有很重要的相關性。因此,本實驗主要探討C型肝炎病毒中的套膜蛋白E2對肝星狀細胞是否會造成相關纖維化因子表現的情形產生,並進一步的探討和纖維化之間的相關性以及影響的機制。本研究利用real-time PCR、西方墨點法、gelatin zymography、RNA干擾技術(small interfering RNA;siRNA)、流式細胞儀分析(flow cytometry)、免疫螢光染色(in situ immunofluorescence assay)和酵素聯結免疫吸附法(enzyme linked-immunosorbent assay;ELISA)等方法,證實套膜蛋白E2確實造成alpha smooth muscle actin (α-SMA)、collagen α(I)和connective tissue growth factor(CTGF)纖維化因子以及發炎因子interleukin(IL)-6、IL-1β表現量增加,也會促進transforming growth factor beta(TGF-β1)表現量增加,並刺激TGF-β1訊息傳遞路徑的啟動,而MMP-2表現量及活性的增加也更加證實套膜蛋白E2具有刺激肝星狀細胞活化的能力。最後進一步證實套膜蛋白E2會藉由刺激肝星狀細胞產生H2O2對細胞產生氧化性傷害,進而活化Janus kinase/signal transducers and activators of transcription (JAK/STAT)傳遞路徑、刺激ERK1/2和p38磷酸化而造成纖維化因子collagen α(I)表現量增加。研究結果證明套膜蛋白E2在C型肝炎病毒誘導纖維化產生的過程當中扮演了重要的角色,希望對於往後在C型肝炎病毒與纖維化的研究與治療上能提供新的研究方向。

Part: I
Carbonic anhydrase (CA) is an enzyme with zinc metal ions, including a number of different isoforms, and its main function lies within the catalytic acid cells and maintain the cell''s internal balance. CA II, CA IX and CA XII are considered to affect the cell''s internal balance of carbonate ions and maintain the normal extracellular pH. A previous study conducted with 60 breast cancer patients revealed a significant increase of CA II protein expression and CA activity in in tumor (P &lt;0.001), as well as mRNA and protein expression levels. Furthermore, a significant correlation was found between CA II activity and tumor size while CA IX and CA XII are involved in the process of tumor development. Although there were extensive results indicating the involvement of CA II and CA IX in the cancer cell invasion and migration, similar studies for CA XII is less and insufficient. Previous studies have revealed that CA XII expression is an indicator for breast cancer cell invasion and useful for tracking surgical outcomes. Therefore, the aim of this study was to explore the impact of CA II, CA IX and CA XII on the extent of invasion and mobility in different breast cancer cells. Furthermore, the related pathways were alsoexplored. In the study with breast cancer cells of different levels of invasion and mobility, results from RNA interference technology showed that the CA XII RNA interference has the most significant inhibition capability for the invasion and migration of MDA-MB-231 cells. Further studies revealed that such inhibition is via an inhibition of phosphorylation of p38. In the final in vivo experiments, CA XII-knockdown MDA-MB-231 cells were inoculated into mice to show that the tumor size and animal body weight were significantly reduced in CA XII-knockdown mice. Take together, these results confirmed that CA XII indeed play an important role in the invasion and migration of MDA-MB-231 breast cancer cells.
Part: II
Chronic infection of hepatitis C virus (HCV) leads to hepatic fibrosis and subsequently cirrhosis, although the underlying mechanisms have not been established. Previous studies have indicated that the binding of HCV E2 protein and CD81 on the surface of hepatic stellate cells (HSCs) lead to the increased protein level and activity of matrix metallopeptidase (MMP) 2, indicating that E2 may involve in the HCV-induced fibrosis. This study was designed to investigate the involvement of HCV E2 protein in the hepatic fibrogenesis. Results showed that E2 protein may promote the expression levels of α-smooth muscle actin (α-SMA) and collagen α(I). Furthermore, several pro-fibrosis or pro-inflammatory cytokines, including transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF), interleukin (IL)-6 and IL-1β, were significantly increased in E2 transfected-HSC cell lines, while the expression of MMP-2 are also considerably increased. Moreover, the significant increases of CTGF and TGF-β1 in a stable E2-expressing Huh7 cell line were also observed the same results. Further molecular studies indicated that the impact of E2 protein on collagen production related to higher production of ROS and activated Janus kinase (JAK)1, JAK2 and also enhance the activation of ERK1/2 and p38, while catalase and inhibitors specific for JAK, ERK1/2, and p38 abolish E2-enhanced expression of collagen α(I). Taken together, this study indicated that E2 protein involve in the pathogenesis of HCV-mediated fibrosis via an up-regulation of collagen α(I) and oxidative stress, which is JAK pathway related.

目錄
第一部分
壹、摘要………………………………………………………..3
貳、縮寫………………………………………………………..6
參、緒論………………………………………………………..7
肆、研究動機………………………………………………….29
伍、實驗方法與材料………………………………………….30
陸、實驗結果………………………………………………….44
柒、討論……………………………………………………….55
捌、參考文獻………………………………………………….59
玖、圖表與圖表說明………………………………………….67
拾、附錄表…………………………………………………….84
第二部分
壹、摘要……………………………………………………….89
貳、縮寫……………………………………………………….91
參、緒論……………………………………………………….93
肆、研究動機………………………………………..…….…109
伍、實驗方法與材料…………………………..………….…111
陸、實驗結果……………………………………..…….……127
柒、討論………………………………………………..….…140
捌、參考文獻……………………………………………...…145
玖、圖表與圖表說明…………………………………..….…153
拾、附錄表……………………………………………...……175


Part: I
Aldred P, Fu P, Barrett G, Penschow JD, Wright RD, Coghlan JP, Fernley RT. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry. Biochemistry. 1991; 30: 569-75.
Aliakbar S, Brown PR. Measurement of human erythrocyte CAI and CAII in adult, newborn, and fetal blood. Clin Biochem. 1996; 29: 157-64.
Alvarez OA, Carmichael DE, DeClerck YA. Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J. Natl. Cancer Inst. 1990; 82: 589-95.
Apte SS, Olaen BR, Murphy G. The gene structure of tissue inhibitor of metalloproteinase (TIMP-3) and its inhibitor activities define the distinct TIMP gene family. J. Biol. Chem. 1995; 270: 14313-8.
Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998; 58: 2825-31.
Bernards R, Weinberg RA. A progression puzzle. Nature. 2002; 418: 823.
Boone TC, Johnson MJ, DeClerck YA, Langley K E. cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proc. Natl. Acad. Sci. USA 1990; 87: 2800-4.
Chia SK, Wykoff CC, Watson PH, Han C, Leek RD, Pastorek J, Gatter KC, Ratcliffe P, Harris AL. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol. 2001; 19: 3660-8.
Collen D. On the regulation and control of fibrinolysis. Thromb Haemost. 1980; 43:77-89.
DeClerck YA, Szpirer C, Aly M S, Cassiman J J, Eeckhout Y, Rousseau G. The gene for tissue inhibitor of metallo- proteinases-2 islocalized on human chromosome arm 17q25. Genomics 1992; 14: 782-4.
Dodgson SJ, Forster RE 2nd. Inhibition of CA V decreases glucose synthesis from pyruvate. Arch Biochem Biophys. 1986a; 251: 198-204.
Dodgson SJ, Forster RE 2nd. Carbonic anhydrase: inhibition results in decreased urea production by hepatocytes. J Appl Physiol 1986b; 60: 646-52.
Dodgson SJ, Forster RE 2nd, Storey BT, Mela L. Mitochondrial carbonic anhydrase. Proc Natl Acad Sci USA. 1980; 77: 5562-6.
Fleming RE, Parkkila S, Parkkila AK, Rajaniemi H, Waheed A, Sly WS. Carbonic anhydrase IV expression in rat and human gastrointestinal tract regional, cellular, and subcellular localization. J Clinl Invest. 1995; 96: 2907-13.
Flenniken AM and Williams BR. Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Genes Dev. 1990; 4: 1094-106.
Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem.1992; 267: 4583-91.
Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997; 74: 111-22.
Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 1996; 271: 30375-80.
Griffiths JR. Are cancer cell acidic? Br J Cancer. 1991; 64: 425-7.
Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastoreková S, Pastorek J, Parkkila SM, Haapasalo HK. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res. 2006; 12: 473-7.
Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer. 2005; 115: 849-60.

Hazen SA, Waheed A, Sly WS, LaNoue KF, Lynch CJ. Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes. FASEB J. 1996; 10: 481-90.
Henry RP. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol. 1996; 58: 523-38.
Hofmann GE, Glatstein I, Schatz F, Heller D, Deligdisch L. Immunohistochemical localization of urokinase-type plasminogen activator and plasminogen activator inhibitor 1 and 2 in early implantation sites. Am. J. Obstet. Gynecol. 1994; 170: 671-6.
Huebner K, Isobe M, Gasson JC, Golde DW, Croce CM. Localization of the gene encoding erythroid-potentiating activity to chromosome region Xpll.l-Xpll.4. Am. J. Hum. Genet. 1986; 38: 819-26.
Hughes L, Malone C, Chumsri S, Burger AM, McDonnell S. Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity. Clin Exp Metastasis. 2008; 25: 549-57.
Hynes MJ. The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biol. 2003; 4: 217. Review.
Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman MI. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U S A. 1998; 95: 12596-601.
Johnson MD, Kim HR, Chesler L, Tsao WG, Bouck N, Polverini P J. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J. Cell Physiol. 1994; 160: 194-202.
Jiang WG, Raz A, Douglas-Jones A, Mansel RE. Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem. 2006; 54: 231-41.
Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971; 246: 2561-73.
Kolkenbrock H, Orgel D, Hecker A, Zimmermann J, Ulbrich, N. Generation and activity of ternary gelatinase B/TTMP-1/ LMW-stromelysin-l complex. Biol. Chem. 1995; 376: 495-500.
Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem. 2001; 276: 20572-8.
Kruithoff EK, Vasalli JD, Schleuning WD, Mattaliano RJ, Bachmann F. Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937. J. Biol. Chem. 1986; 261: 11207-13.
Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Res. 1999; 19: 1589-92.
Lakkis MM, Bergenhem NC, Tashian RE. Expression of mouse carbonic anhydraseⅦ in E.coli and demonstration of its CO2 .hydrase activity. Biochem Biophys Res Commun. 1996; 226: 268-72.
Lii CK, Chai YC, Zhao W, Thomas JA, Hendrich S. S-thiolation and irreversible oxidation of sulfhydryls on carbonic anhydrase III during oxidative stress: a method for studying protein modification in intact cells and tissues. Arch Biochem Biophys 1994: 308: 231-9.
Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997; 74: 1-20.
Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967; 47: 595-781.
Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behaviour of human melanoma cells. Clin Exp Metastasis. 1996; 14: 176-86.
McKiernan JM, Buttyan R, Bander NH, Stifelman MD, Katz AE, Chen MW, Olsson CA, Sawczuk IS. Expression of the tumor-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res. 1997; 57: 2362-5.
Meldrum NU, Roughton FJ. Carbonic anhydrase: its preparation and properties. J Physiol. 1933; 80: 113-42.
Messa C, Choi Y, Hoh CK, Jacobs EL, Glaspy JA, Rege S, Nitzsche E, Huang SC, Phelps ME, Hawkins RA. Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET. J Comput Assist Tomogr. 1992; 16: 684-9.
Montgomery JC, Venta PJ, Eddy RL, Fukushima YS, Shows TB, Tashian RE. Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics. 1991; 11: 835-48.
Mori K, Ogawa Y, Ebihara K, Tamura N, Tashiro K, Kuwaharal T, Mukoyama M, Wara A, Ozaki S, Tanaka, Nakao KI. Isolation and characterization of CAXIV, a novel membrane-bound carbonic anhydrase from mouse kidney. J Biol Chem. 1999; 274: 15701-5.
Murakami H, Sly WS. Purification and characterization of human salivary carbonic anhydrase. J Biol Chem. 1987; 262: 1382-8.
Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992; 7: 120-5.
Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. Int J Cancer. 1989 ; 44: 757-60.
Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int. 2002; 52: 255-64. Review.
Nagao Y, Srinivasan M, Platero JS, Svendrowski M, Waheed A, Sly WS. Mitochondrial carbonic anhydrase (isozyme V) in mouse and rat: cDNA cloning, expression, subcellular localization, processing, and tissue distribution. Proc Natl Acad Sci USA. 1994; 91: 10330-4.
Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999; 274: 21491-4.
Okuyama T, Waheed A, Kusumoto W, Zhu XL, Sly WS. Carbonic anhydrase IV: role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity. Arch Biochem Biophys. 1995; 320: 315-22.


Opavsky R, Pastorekova S, Zelnik V, Gibadulinova A, Stanbridge EJ, Zavada J, Kettmann R, Pastorek J. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 1996; 33: 480-7.
Panelli MC, Wang E, Marincola FM. The pathway to biomarker discovery: carbonic anhydrase IX and the prediction of immune responsiveness. Clin Cancer Res. 2005; 11: 3601-3.
Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, Pastorek J. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997; 112: 398-408.
Ravanti L, Kähäri VM. Matrix metalloproteinases in wound repair (review). Int J Mol Med. 2000; 6: 391-407. Review.
Ren X, Lindskog S. Buffer dependence of CO2 hydration catalyzed by human carbonic anhydrase I. Biochim Biophys Acta 1992; 1120: 81-6.
Riley DA, Ellis S, Bain J. Carbonic anhydrase activity in skeletal muscle fiber types, axons, spindles, and capillaries of rat soleus and extensor digitorum longus muscles. J Histochem Cytochem 1982; 30: 1275-88.
Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. Impaired wound healing in mice with a disrupted plasminogen gene. Nat. Med. 1996; 2: 287-92.
Rotin D, Steele-Norwood D, Grinstein S, Tannock I. Requirement of the Na+ /H+ exchanger for tumor growth. Cancer Res. 1989; 49: 205-11.
Saarnio J, Parkkila S, Parkkila AK, Haukipuro K, Pastoreková S, Pastorek J, Kairaluoma MI, Karttunen TJ. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol. 1998; 153: 279-85.
Shapiro SD, Kobayashi DK, Welgus H G. Identification of TIMP-2 in human alveolar macrophages. J. Biol. Chem. 1992; 267: 13890-4.
Singer P. Nutritional care to prevent and heal pressure ulcers. Isr Med Assoc J. 2002; 4: 713-6. Review.

Sliva D, Rizzo MT, English D. Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem. 2002; 277: 3150-7.
Sly WS, Hu PY. Human carbonic anhydrase and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995; 64: 375-401.
Sly WS, Grubb JH, Shah G, Tureci O, Rajaniemi H. Expression of a novel transmembrane carbonic anhydrase isozyme XII in normal human gut and colorectal tumors. Am J Pathol 2000; 156: 577-84.
Stetler-Stevenson WG, Liotta LA, Kleiner DE Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993; 7: 1434-41. Review.
Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003; 23: 146-89.
Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). Biochem. Biophys. Res. Commun. 1990; 171: 1264-71.
Tanner MJ. Physiology: The acid test for band 3. Nature. 1996; 382: 209-10.
Tannock IF, Rotin D. Acid pH in tumor and its potential for therapeutic exploitation. Cancer Res. 1989; 49: 4373-84.
Tashian RE. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989; 10: 186-92.
Teicher BA, Liu SD, Liu JT, Holden SA, Herman TS. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res 1993; 13: 1549-56.
Thomas JA, Poland B, Honzatko R. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 1995: 319: 1-9.
Thorgeirsson UP, Yoshiji H, Sinha CC, Gomez DE. Breast cancer: tumor neovasculature and the effect of tissue inhibitor of metailoproteinases-l (TIMP-1) on angiogenesis. In Vivo 1996; 10: 137-44.
Türeci O, Sahin U, Vollmar E, Siemer S, Göttert E, Seitz G, Parkkila AK, Shah GN, Grubb JH, Pfreundschuh M, Sly WS. Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci USA 1998; 95: 7608-13.
Velasco G, Cal S, Quesada V, Sánchez LM, López-Otín C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem. 2002; 277: 37637-46.
Vermylen P, Roufosse C, Burny A, Verhest A, Bosschaerts T, Pastorekova S, Ninane V, Sculier JP. Carbonic anhydrase IX antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J. 1999; 14: 806-11.
Vince JW, Reithmeier RA. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem 1998; 273: 28430-7.
Wei WZ, Pauley R, Lichlyter D, Soule H, Shi WP, Calaf G, Russo J, Jones RF. Neoplastic progression of breast epithelial cells--a molecular analysis. Br J Cancer. 1998; 78: 198-204.
Wick M, Burger C, BNsselbach S, Lucibello E, Muller R. A novel member of human tissue inhibitor of metalloprotein- ases (TIMP) gene family is regulated during GI progression, mitogenic stimulation, diferentiation and senescence. J. Biol. Chem. 1994; 269: 18953-60.
Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991; 5: 2145-55.
Xu L, Fidler IJ. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res. 2000; 60: 4610-6.
Xu L, Xie K, Mukaida N, Matsushima K, Fidler IJ. Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res. 1999; 59: 5822-9.
Yang TT, Hawkes SP. Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA 1992; 89: 10676-80.

Part: II
Banerjee R, Dasgupta A. Specific interaction of hepatitis C virus protease/helicase NS3 with the 3''-terminal sequences of viral positive- and negative-strand RNA. J Virol. 2001; 75: 1708-21.
Bartosch B, Dubuisson J, Cosset FL. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med. 2003; 197: 633-42.
Beasley, RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer. 1988; 61: 1942-56.
Behrens SE, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 1996; 15: 12-22.
Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS. Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res. 1985; 26: 1241-51.
Blomhoff R, Norum KR, Berg T. Hepatic uptake of [3H] retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells. J Biol Chem. 1985; 260: 13571-5.
Blomhoff R, Wake K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. Faseb J. 1991; 5: 271-7.
Breitkopf K, Haas S, Wiercinska E, Singer MV, Dooley S. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res. 2005; 29: 121-31. Review.
Calabrese F, Pontisso P, Pettenazzo E, Benvegnu L, Vario A, Chemello L, Alberti A, Valente M. Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology. 2000; 31: 1153-9.
Callens N, Ciczora Y, Bartosch B, Vu-Dac N, Cosset FL, Pawlotsky JM, Penin F, Dubuisson J. Basic residues in hypervariable region 1 of hepatitis C virus envelope glycoprotein e2 contribute to virus entry. J Virol. 2005; 79: 15331-41.
Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989; 244: 359-62.
Di Bona D, Cippitelli M, Fionda C, Cammà C, Licata A, Santoni A, Craxì A. Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway. J Hepatol. 2006; 45: 271-9.
Erdtmann L, Franck N, Lerat H, Le Seyec J, Gilot D, Cannie I, Gripon P, Hibner U, Guguen-Guillouzo C. The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. J Biol Chem. 2003; 278: 18256-64.
Farci P, Alter HJ, Wong DC, Miller RH, Govindarajan S, Engle R, Shapiro M, Purcell RH. Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. Proc Natl Acad Sci U S A. 1994; 91: 7792-6.
Farci P, Shimoda A, Wong D, Cabezon T, De Gioannis D, Strazzera A, Shimizu Y, Shapiro M, Alter HJ, Purcell RH. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci U S A. 1996; 93: 15394-9.
Fehér J, Lengyel G. Silymarin in the treatment of chronic liver diseases: past and future. Orv Hetil. 2008; 149: 2413-8. Review.
Fineschi S, Reith W, Guerne PA, Dayer JM, Chizzolini C. Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. FASEB J. 2006 ; 20: 562-4.
French SW. Biochemistry of alcoholic liver disease. Crit Rev Clin Lab Sci. 1992; 29: 83-115.
Friedman G, Liu LM, Friedman SL, Boyles JK. Apolipoprotein E is secreted by cultured lipocytes of the rat liver. J Lipid Res. 1991; 32: 107-14.
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000; 275: 2247-50.
Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med. 1993; 328: 1828-35.
Friedman SL. Hepatic stellate cells. Prog Liver Dis. 1996; 14: 101-30.
Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001; 21: 311-35.
Ghosh AK, Steele R, Meyer K, Ray R, Ray RB. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol. 1999; 80: 1179-83.
Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 1993; 90: 10583-7.
Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL. Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res. 1985; 160: 138-49.
Hijikata H. Rotational acetabular osteotomy--indications and operative procedures. Nippon Seikeigeka Gakkai Zasshi. 1991; 65: 954-66.
Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N, Kato N, Tanaka T, Kimura K, Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol. 1993; 67: 4665-75.
Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology. 1994; 19: 1354-9.
Huang XF, Chai Y. TGF-β signalling and tooth development. Chin J Dent Res. 2010; 13: 7-15. Review.
ITO T, NEMOTO M. Kupfer''s cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat Jpn. 1952; 24: 243-58.
Kamegaya M, Saisu T, Miura Y, Moriya H. A proposed prognostic formula for Perthes'' disease. Clin Orthop Relat Res. 2005; 440: 205-8.
Kim JE, Song WK, Chung KM, Back SH, Jang SK. Subcellular localization of hepatitis C viral proteins in mammalian cells. Arch Virol. 1999; 144: 329-43.
Kinnman N, Francoz C, Barbu V, Wendum D, Rey C, Hultcrantz R, Poupon R, Housset C. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest. 2003; 83: 163-73.
Kolodney MS, Thimgan MS, Honda HM, Tsai G, Yee HF Jr. Ca2+-independent myosin II phosphorylation and contraction in chicken embryo fibroblasts. J Physiol. 1999; 515: 87-92.
Korenaga M, Okuda M, Otani K, Wang T, Li Y, Weinman SA. Mitochondrial dysfunction in hepatitis C. J Clin Gastroenterol. 2005; 39: 162-6. Review.
Koshy R, Hofschneider PH. Transactivation by hepatitis B virus may contribute to hepatocarcinogenesis. Curr Top Microbiol Immunol. 1989; 144: 265-81.
Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY, Lee SD. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002; 21: 4801-11.
Lebrec D. Pharmacological treatment of portal hypertension: hemodynamic effects and prevention of bleeding. Pharmacol Ther. 1994; 61: 65-107.
Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TS. Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol. 1999; 73: 3718-22.
Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol. 1999; 14: 618-33.
Lo SY, Ku CW, Ma HC, Li YH, Yu JH, Lin HH, Lua AC, Lee ML. Detection of serologic responses to GB virus C/hepatitis G virus infection. Int J Infect Dis. 2002; 6: 223-7.
Lo SY, Masiarz F, Hwang SB, Lai MM, Ou JH. Differential subcellular localization of hepatitis C virus core gene products. Virology. 1995; 213: 455-61.
Majumder M, Ghosh AK, Steele R, Ray R, Ray RB. Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J Virol. 2001; 75: 1401-7.
Marusawa H, Hijikata M, Chiba T, Shimotohno K. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation. J Virol. 1999; 73: 4713-20.
Mazzocca A, Sciammetta SC, Carloni V, Cosmi L, Annunziato F, Harada T, Abrignani S, Pinzani M. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem. 2005; 280: 11329-39.
McGee JO, Patrick RS. The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury. Lab Invest. 1972; 26: 429-40.
Murashima S, Sata M, Suzuki H, Noguchi S, Tanikawa K. Sequence variation of the hypervariable region in HCV carriers with normal ALT levels: a comparison with symptomatic carriers. Microbiol Immunol. 1996; 40: 941-7.
Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush ML. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology. 2006; 43: 257-65.
Penin F, Brass V, Appel N, Ramboarina S, Montserret R, Ficheux D, Blum HE, Bartenschlager R, Moradpour D. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem. 2004; 279: 40835-43.
Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol. 2007; 22: 79-84. Review.
Prikhod''ko EA, Prikhod''ko GG, Siegel RM, Thompson P, Major ME, Cohen JI. The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology. 2004; 329: 53-67.
Qadri I, Iwahashi M, Simon F. Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochim Biophys Acta. 2002; 1592: 193-204.
Ramadori G, Knittel T, Schwögler S, Bieber F, Rieder H, Meyer zum Büschenfelde KH. Dexamethasone modulates alpha 2-macroglobulin and apolipoprotein E gene expression in cultured rat liver fat-storing (Ito) cells. Hepatology. 1991; 14: 875-82.
Sakai A, Claire MS, Faulk K, Govindarajan S, Emerson SU, Purcell RH, Bukh J. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A. 2003; 100: 11646-51.
Shimizu YK, Hijikata M, Iwamoto A, Alter HJ, Purcell RH, Yoshikura H. Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses. J Virol. 1994; 68: 1494-500.
Shin JY, Hur W, Wang JS, Jang JW, Kim CW, Bae SH, Jang SK, Yang SH, Sung YC, Kwon OJ, Yoon SK. HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1. Exp Mol Med. 2005; 37: 138-45.
Siavoshian S, Abraham JD, Kieny MP, Schuster C. HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell lines. Arch Virol. 2004; 149: 323-336.
Smeets PJ, Teunissen BE, Willemsen PH, van Nieuwenhoven FA, Brouns AE, Janssen BJ, Cleutjens JP, Staels B, van der Vusse GJ, van Bilsen M. Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload. Cardiovasc Res. 2008; 78: 79-89.
Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver. 2001; 21: 1-12.
Tai CL, Chi WK, Chen DS, Hwang LH. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol. 1996; 70: 8477-84.
Taylor SJ, Peat JK, Armour CL. An evaluation of prostaglandin E2 vaginal gel use in practice. J Clin Pharm Ther. 1999; 24: 303-10.
Thimgan MS, Yee HF Jr. Quantitation of rat hepatic stellate cell contraction: stellate cells'' contribution to sinusoidal resistance. Am J Physiol. 1999; 277: 137-43.
Toda K, Kumagai N, Tsuchimoto K, Inagaki H, Suzuki T, Oishi T, Atsukawa K, Saito H, Morizane T, Hibi T, Ishii H. Induction of hepatic stellate cell proliferation by LPS-stimulated peripheral blood mononuclear cells from patients with liver cirrhosis. J Gastroenterol. 2000; 35: 214-20.
Tong WY, Nagano-Fujii M, Hidajat R, Deng L, Takigawa Y, Hotta H. Physical interaction between hepatitis C virus NS4B protein and CREB-RP/ATF6beta. Biochem Biophys Res Commun. 2002; 299: 366-72.
Trabaud MA, Bailly F, Si-Ahmed SN, Chevallier P, Sepetjan M, Colucci G, Trepo C. Comparison of HCV RNA assays for the detection and quantification of hepatitis C virus RNA levels in serum of patients with chronic hepatitis C treated with interferon. J Med Virol. 1997; 52: 105-12.
Tsukamoto H. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcohol Clin Exp Res. 1999; 23: 911-6.
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol. 2010; 88: 204-19. Review.
Wake K, Motomatsu K, Senoo H, Masuda A, Adachi E. Improved Kupffer''s gold chloride method for demonstrating the stellate cells storing retinol (vitamin A) in the liver and extrahepatic organs of vertebrates. Stain Technol. 1986; 61: 193-200.
Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980; 66: 303-53.
Wake K. "Sternzellen" in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat. 1971; 132: 429-62.
Zimmerman K. Uber das Verhaltniss der "Kupfferschen Sternzellen" zum Endothel der Leberkapillaren beim Menschen. Ztsch Mikr Anat Forsch. 2001; 14: 528-48.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 周策縱:〈「莊子‧養生主」篇本義復原〉,《中國文哲研究集刊》,民81年3月。
2. 武內義雄著、連清吉譯:〈莊子考〉,《鵝湖月刊》第15卷,第 11期總號一七九,1990年5月。
3. 周紹賢:《莊子的生死觀》,《建設雜誌》第8卷第4期,48年9月。
4. 宋榮培:〈關於莊子的社會危機意識和自由意識的問題〉,《哲學雜誌》第29期,1997年5月。
5. 余敦康:〈從《莊子》到郭象《莊子注》〉,《哲學與文化》第21卷第8期,
6. 何國銓:〈老莊言「道」之形上意義與其對人生問題之探討〉,《鵝湖》第十三卷第三期,1987年。
7. 江淑君:〈死生無變於己--《莊子》生死觀析論〉,《淡江大學中文學報》第6期,2000年12月。
8. 王小滕:〈《莊子‧應帝王》「壺子示相」寓言之試詮〉,《中國文學研究》第十七期,臺灣大學中國文學研究所印行,2003年6月。
9. 王邦雄:〈莊子心齋「氣」觀念的詮釋問題〉,《淡江中文學報》第十四期,2006年6月。
10. 邵漢明:《莊子人學二題》,《哲學與文化》18卷第1期,1991年1月。
11. 吳汝鈞:〈莊子對仁義德性的看法〉,《中國文化月刊》第199期,1996年5月。
12. 吳建明:〈莊子命論之生死觀解析〉,《揭諦》第12期,2007年3月。
13. 邱敏捷:〈憨山《莊子內篇註》之特色〉,《中國文化月刊》第258期,2001年9月。
14. 周雅清:〈成玄英的思維方式〉,《鵝湖月刊》,第326期,2002年8月。
15. 高柏園:〈《莊子‧人間世》的應世態度〉,《鵝湖雜誌》第200期,1992年2月。