|
[1] Z. Jiang and R.A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094–1104, Aug. 2006. [2] S.M. Lukic, J. Cao, R.C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258–2267, Jun. 2008. [3] H. Tao, J.L. Duarte and M.A.M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012–3021, Aug. 2008. [4] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Massachusetts, Kluwer Academic Publishers, 2001, pp. 39–55. [5] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronic: Converters, Applications and Design. New York, Wiley, 1995, pp. 172–178. [6] J. Wang F. Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, “Low cost fuel cell converter system for residential power generation,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1315–1322, Sep. 2004. [7] R. Sharma and H. Cao, “Low cost high efficiency DC-DC converter for fuel cell powered auxiliary power unit of a heavy vechile,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 587–597, May 2006. [8] S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155–160, Jan./Feb. 1996. [9] D. D. C. Lu, D. K.W. Cheng, and Y. S. Lee, “A single-switch continuous conduction- mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767–776, Aug. 2003. [10] Y. S. Lee, and B. T. Lin, “Adding active clamping and soft switching to boost-flyback single-stage Isolated power-factor-corrected power supplies,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 1017–1027, Nov. 1997. [11] C. M. C. Duarte, and I. Barbi, “An improved family of ZVS-PWM active-clamping DC-to-DC converters,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 1–7, Jan. 2002. [12] T.F. Wu, Y. S. Lai, J. C. Hung and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008. [13] D. K. W Cheng, X. C. Liu, and Y. S. Lee, “A new improved boost converter with ripple free input current using coupled inductors,” Proc. IEE Int. Conf. on Power electronics and variable speed drives, London, UK, 1998, pp. 592–599. [14] J. Wang, W. G. Dunford, and K. Monrad, “Analysis of a ripple-free input-current boost converter with discontinuous conduction characteristics,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 684–694, July 1997. [15] K. C. Tseng, and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 151, no. 2, pp. 182–190, 2004. [16] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 152, no 2, pp. 217–225, 2005. [17] T. Dumrongkittigule, V. Tarateeraseth and W. Khan-ngern, “A new integrated inductor balanced switching technique for common mode EMI reduction in high step-up DC/DC converter,” in Proc. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore. 2006, pp. 541–544. [18] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. Power Electronics Specialists Conf., Rohode, Greece, 2008, pp. 944–950. [19] J. W. Baek, M. H. Ryoo, T. J. Kin, D. W. Yoo and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON Conf., 2005, Raleigh, North Carolina, USA, pp. 1–6. [20] J. Y. Lee and S. N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May. 2008. [21] F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105–113, Jan. 2003. [22] F. L. Luo and H. Ye, “Positive output multiple-lift push–pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electrons., IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594–602, June 2004. [23] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 152, no. 4, pp. 793–802, 2005. [24] R. J. Wai and R. Y. Duan, “High converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005. [25] R. J. Wai, C. Y. Lin, R. Y. Duan and Y. R. Chang, “High efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electrons., vol. 54, no. 1, pp. 354–364, Feb. 2007. [26] O. Krykunov, “Analysis of the Extended Forward Converter for Fuel Cell Applications,” in Proc. ISIE Conf., 2008, Cambridge, UK, pp. 661–666. [27] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc–dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003. [28] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Step-up DC-DC converter by coupled inductor and voltage-lift technique,” IET Power Electronics, vol. 3, no. 3, pp. 369–378, 2010. [29] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel High Step-Up DC–DC Converter for Fuel Cell Energy Conversion System,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007–2017, June 2010.
|