跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翟慰宗
研究生(外文):Wei-Tsung Tsai
論文名稱:磚類再生粒料混凝土高溫受熱後對抗壓強度與超音波速之影響
論文名稱(外文):Effect of Elevated Temperature on Strength and Ultrasonic Pulse Velocity of Recycled Concrete using Brick Aggregates
指導教授:何仲明
指導教授(外文):Chung-Ming Ho
學位類別:博士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:153
中文關鍵詞:抗壓強度超音波速迴歸分析磁磚紅磚高溫受熱再生混凝土
外文關鍵詞:tilerecycled concretehigh temperatures exposurecompressive strengthultrasonic pulse velocityregression analysisbrick
相關次數:
  • 被引用被引用:3
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
本文以廢棄紅磚、磁磚製成再生細粗、細粒料及粉料以不同比例取代天然粒料及水泥,拌製混凝土、水泥砂漿,探討再生料使用對混凝土、水泥砂漿之抗壓強度相對強度比、齡期28至91天之抗壓強度成長、高溫受熱後之抗壓強度降低百分比與由室溫加熱至不同高溫後抗壓強度變化、超音波速折減變化等之影響;以簡單非線性迴歸法建立高溫受熱後再生混凝土抗壓強度與溫度之迴歸曲線經驗式、高溫受熱後之抗壓強度折減率與溫度之迴歸曲線經驗式,並由抗壓強度及超音波速試驗值建立不同再生粒料取代比例混凝土抗壓強度與超音波速迴歸曲線、不同水灰比再生混凝土抗壓強度與超音波速迴歸曲線、不同高溫受熱後再生混凝土抗壓強度與超音波速迴歸曲線。
由試驗結果顯示再生紅磚、再生磁磚粗、細粒料混凝土、再生粉料水泥砂漿晚期之抗壓強度成長均較天然混凝土、天然水泥砂漿佳,再生紅磚、磁磚粗、細粒料使用對混凝土高溫受熱後抗壓強度影響不明顯。
由試驗結果顯示紅磚粗、細粒料再生混凝土高溫作用後超音波速折減量、百分比較天然混凝土高。再生磁磚粗粒料混凝土高溫受熱後超音波速較天然混凝土試驗值高,再生磁磚細粒料之使用對混凝土高溫受熱後超音波速折減影響則不明顯。
由迴歸分析顯示,相同紅磚再生粗粒料取代比例之混凝土抗壓強度與超音波速具高度相關性。不同水灰比之紅磚再生粒料混凝土抗壓強度與超音波速迴歸曲線因粗、細粒料含量不同,抗壓強度與超音波速相關性不高。高溫作後再生紅磚粗、細粒料混凝土抗壓強度與超音波速具高度相關性。另相同磁磚再生粗、細粒料取代比例混凝土抗壓強度與超音波速俱高度相關性,不同取代比例對再生混凝土抗壓強度與超音波速相關性影響性小,高溫作後磁磚再生粗、細粒料混凝土抗壓強度與超音波速具高度相關性。


The purpose of this paper is to investigate the effect on the properties of recycled concrete and mortar with various percentages of natural coarse, fine aggregates and cement replaced by crushed construction brick and tile aggregates. To find the relative compressive strength ratio, the increase in compressive strength between 28-91 days The percentage of decrease in residual strength and the change on compressive strength and ultrasonic pulse velocity (UPV) after subjected to elevated temperatures of recycled concrete and mortar are performed. A simple regression method used to establish the regression equation of compressive strength and temperature of recycled concrete.
Experiment results revealed that the development of long-term strength of recycled concrete and mortar is better than that of the natural concrete and mortar. The use of brick coarse and fine aggregate affects the compressive strength slightly.
Experiment results revealed that the reduction of UPV of recycled concrete with coarse and fine brick aggregate is higher than that of natural concrete. The UPV of recycled concrete with coarse tile aggregate is higher than that of natural concrete. The use of tile fine aggregate affects the UPV slightly.
Regression analysis results revealed that the compressive strength and UPV of recycled concrete with the same coarse brick aggregate replacement had a high relevance. The recycled concrete with various water to cement ratio had a low relevance due to the content of aggregate. The analysis results revealed that the residual strength and residual UPV of recycled concrete with the coarse or fine brick aggregate had a high relevance after elevated temperatures exposure. Experimental results revealed that the compressive strength and UPV of recycled concrete with the same coarse tile aggregate replacement had a high relevance. The replacement of tile affects the regression slightly. The residual strength and residual UPV of recycled concrete with the coarse or fine tile aggregate had a high relevance after elevated temperatures exposure.


中英文摘要........................... Ⅰ
目錄............................. Ⅱ
表目錄............................ Ⅵ
圖目錄............................ VII
第一章 緒論
1.1研究背景..................... 1
1.2研究範圍..................... 1
1.3論文章節..................... 2
第二章 文獻回顧
2.1再生混凝土.................... 3
2.2磚類粒料再生混凝土................ 3
2.3水泥漿體之高溫效應................ 5
2.4混凝土粒料之高溫效應............... 5
2.5混凝土之高溫效應................. 5
2.6混凝土之超音波速................. 7
2.7混凝土抗壓強度與超音波速度關係.......... 8
2.8小結....................... 9
第三章 試驗規劃與迴歸分析
3.1試驗材料.....................23
3.1.1再生紅磚粗、細粒料混凝土..........23
3.1.2再生磁磚粗、細粒料混凝土..........23
3.1.3再生紅磚、磁磚水泥砂漿...........23
3.2試驗變數規劃...................23
3.2.1再生混凝土、水泥砂漿之抗壓強度與超音波速值.23
3.2.2再生混凝土、水泥砂漿之高溫試驗.......24
3.3試體製作.....................24
3.3.1混凝土圓柱試體...............24
3.3.2水泥砂漿方形試體..............25
3.4試驗原理與方法..................25
3.4.1超音波試驗原理與方法............25
3.4.2超音波速試驗儀器..............25
3.4.3超音波試驗步驟...............26
3.4.4抗壓強度試驗................26
3.4.5高溫試驗..................26
3.5迴歸分析.....................27
3.5.1簡單迴歸..................27
3.5.2簡單線性迴歸評估..............28
3.5.3非線性迴歸原理...............28
第四章 紅磚再生粒料混凝土試驗結果分析與討論
4.1紅磚再生粗粒料混凝土...............39
4.1.1紅磚再生粗粒料混凝土之抗壓強度.......39
4.1.2紅磚再生粗粒料混凝土高溫受熱之抗壓強度...39
4.1.3紅磚再生粗粒料混凝土之超音波速值......40
4.2紅磚再生細粒料混凝土...............41
4.2.1紅磚再生細粒料混凝土之抗壓強度.......41
4.2.2紅磚再生細粒料混凝土高溫受熱之抗壓強度...42
4.2.3紅磚再生細粒料混凝土之超音波速值......43
4.3紅磚再生粉料水泥砂漿.............44
4.3.1紅磚再生粉料水泥砂漿之抗壓強度.......44
4.3.2紅磚再生粉料水泥砂漿高溫受熱之抗壓強度...44
4.3.3紅磚再生粉料水泥砂漿之超音波速值......45
第五章 磁磚再生粒料混凝土試驗結果分析與討論
5.1磁磚再生粗粒料混凝土.............88
5.1.1磁磚再生粗粒料混凝土之抗壓強度.......88
5.1.2磁磚再生粗粒料混凝土高溫受熱之抗壓強度...88
5.1.3磁磚再生粗粒料混凝土之超音波速值......89
5.2磁磚再生細粒料混凝土.............90
5.2.1磁磚再生細粒料混凝土之抗壓強度.......90
5.2.2磁磚再生細粒料混凝土高溫受熱之抗壓強度...91
5.2.3磁磚再生細粒料混凝土之超音波速值......91
5.3磁磚再生粉料水泥砂漿.............93
5.3.1磁磚再生粉料水泥砂漿之抗壓強度.......93
5.3.2磁磚再生粉料水泥砂漿高溫受熱之抗壓強度...93
5.3.3磁磚再生粉料水泥砂漿之超音波速值......94
第六章 結論與建議
6.1結論.....................137
6.1.1紅磚再生料混凝土..............137
6.1.2磁磚再生料混凝土..............137
6.2建議.....................138
參考文獻.....................139
表3-1紅磚再生粗粒料混凝土粒料物理性質................ 31
表3-2紅磚再生細粒料混凝土粒料物理性質.............. .31
表3-3磁磚再生粗粒料混凝土粒料物理性質.... ...........32
表3-4磁磚再生細粒料混凝土粒料物理性質............. ..32
表3-5再生粉料水泥砂漿細粒料物理性質............... .32
表3-6 紅磚再生粉料化學成分.....................33
表3-7 磁磚再生粉料化學成分.....................34
表3-8 紅磚再生粗粒料混凝土配比設計表................35
表3-9 紅磚再生細粒料混凝土配比設計表................35
表3-10 磁磚再生粗粒料混凝土配比設計............... .36
表3-11 磁磚再生細粒料混凝土配比設計.................36
表3-12 紅磚再生粉料水泥砂漿配比設計表................37
表3-13 磁磚再生粉料水泥砂漿配比設計.................37
圖3-1 試驗規劃流程圖............. ..........30
圖3-2 超音波速直接量測示意圖 ............. ......38
圖3-3 ASTM E119標準溫度時間加熱曲線 ........ ......38
圖4-1 紅磚再生粗粒料混凝土抗壓強度(a)w/c=0.4, (b)w/c=0.6........47
圖4-2 紅磚再生粗粒料混凝土抗壓強度相對強度比(a)28 days, (b)91 days...48
圖4-3 紅磚再生粗粒料混凝土高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6..49
圖4-4 紅磚再生粗粒料混凝土高溫受熱後之抗壓強度降低百分比(a)w/c=0.4,
(b) w/c=0.6......... ................50
圖4-5 紅磚再生粗粒料混凝土高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4,
(b) w/c=0.6....... ..................51
圖4-6 紅磚再生粗粒料混凝土高溫受熱後抗壓強度折減率迴歸曲線(a)w/c=0.4, (b)w/c=0.6...... ....................52
圖4-7 紅磚再生粗粒料混凝土超音波速(a)w/c=0.4, (b)w/c=0.6........53
圖4-8 紅磚再生粗粒料混凝土高溫受熱後之超音波速(a)w/c=0.4, (b)w/c=0.6. 54
圖4-9 紅磚再生粗粒料混凝土齡期28至91天之抗壓強度成長....... 55
圖4-10 溫度25-105℃紅磚再生粗粒料混凝土抗壓強度成長........55
圖4-11 溫度25-300℃紅磚再生粗粒料混凝土抗壓強度成長.........55
圖4-12 溫度25-440℃紅磚再生粗粒料混凝土抗壓強度折減.........56
圖4-13 溫度25-580℃紅磚再生粗粒料混凝土抗壓強度折減....... .56
圖4-14 溫度25-800℃紅磚再生粗粒料混凝土抗壓強度折減........ 56
圖4-15 溫度25-300℃紅磚再生粗粒料混凝土超音波速折減.........57
圖4-16 溫度25-440℃紅磚再生粗粒料混凝土超音波速折減.........57
圖4-17 溫度25-580℃紅磚再生粗粒料混凝土超音波速折減.........57
圖4-18 溫度25-800℃紅磚再生粗粒料混凝土超音波速折減.........58
圖4-19 不同紅磚再生粗粒料取代比例混凝土抗壓強度與超音波速回歸曲線. 58圖4-20 不同水灰比紅磚再生粗粒料混凝土抗壓強度與超音波速迴歸曲線...59
圖4-21 高溫受熱後紅磚再生粗粒料混凝土抗壓強度與超音波數迴歸曲線...60
圖4-22 紅磚再生細粒料混凝土抗壓強度(a)w/c=0.4, (b)w/c=0.6........61
圖4-23 紅磚再生細粒料混凝土抗壓強度相對強度比(a)28 days, (b)91 days...62
圖4-24 紅磚再生細粒料混凝土高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6.63
圖4-25 紅磚再生細粒料混凝土高溫受熱後之抗壓強度降低百分比(a)w/c=0.4,
(b)w/c=0.6......... ................64
圖4-26紅磚再生細粒料混凝土高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4, (b)w/c=0.6......... ................65
圖4-27紅磚再生細粒料混凝土高溫受熱後之抗壓強度折減率迴歸曲線(a)w/c=0.4,
(b)w/c=0.6......... ................66
圖4-28 紅磚再生細粒料混凝土超音波速(a)w/c=0.4, (b)w/c=0.6.......67
圖4-29紅磚再生細粒料混凝土高溫受熱後之超音波速(a)w/c=0.4, (b)w/c=0.6...68
圖4-30 紅磚再生細粒料混凝土齡期28至91天之抗壓強度成長.......69
圖4-31 溫度25-105℃紅磚再生細粒料混凝土抗壓強度成長..... ...69
圖4-32 溫度25-300℃紅磚再生細粒料混凝土抗壓強度成長.........69
圖4-33 溫度25-440℃紅磚再生細粒料混凝土抗壓強度成長.........70
圖4-34 溫度25-580℃紅磚再生細粒料混凝土抗壓強度折減.........70
圖4-35 溫度25-800℃紅磚再生細粒料混凝土抗壓強度折減.........70
圖4-36 溫度25-300℃紅磚再生細粒料混凝土超音波速折減........71
圖4-37 溫度25-440℃紅磚再生細粒料混凝土超音波速折減........71
圖4-38 溫度25-580℃紅磚再生細粒料混凝土超音波速折減........71
圖4-39 溫度25-800℃紅磚再生細粒料混凝土超音波速折減........72
圖4-40 不同紅磚再生細粒料取代比例混凝土抗壓強度與超音波速迴歸曲線..72
圖4-41 不同水灰比紅磚再生細粒料混凝土抗壓強度與超音波速迴歸曲線..73
圖4-42 高溫受熱後紅磚再生細粒料混凝土抗壓強度與超音波數迴歸曲線. ..74
圖4-43 紅磚再生粉料水泥砂漿抗壓強度(a)w/c=0.4, (b)w/c=0.6.........75
圖4-44 紅磚再生粉料水泥砂漿抗壓強度相對強度比(a)28 days, (b)91 day...76
圖4-45 紅磚再生粉料水泥砂漿高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6.77
圖4-46 紅磚再生粉料水泥砂漿高溫受熱後之抗壓強度降低百分比(a)w/c=0.4,
(b)w/c=0.6) ......... ................78
圖4-47 紅磚再生粉料水泥砂漿高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4,
(b)w/c=0.6) ......... ................79
圖4-48紅磚再生粉料水泥砂漿高溫受熱後之抗壓強度折減率迴歸曲線(a)w/c=0.4,
(b)w/c=0.6) ......... ................80
圖4-49紅磚再生粉料水泥砂漿超音波速(a)w/c=0.4, (b)w/c=0.6........81
圖4-50 紅磚再生粉料水泥砂漿高溫受熱後之超音波速(a)w/c=0.4, (b)w/c=0.6.
圖4-51 紅磚再生粉料水泥砂漿齡期28至91天之抗壓強度成長......82
圖4-52 溫度25-105℃紅磚再生粉料水泥砂漿抗壓強度成長.........83
圖4-53 溫度25-300℃紅磚再生粉料水泥砂漿抗壓強度成長.........83
圖4-54 溫度25-440℃紅磚再生粉料水泥砂漿抗壓強度成長.........84
圖4-55 溫度25-580℃紅磚再生粉料水泥砂漿抗壓強度變化.........84
圖4-56 溫度25-800℃紅磚再生粉料水泥砂漿抗壓強度折減........85
圖4-57 溫度25-300℃紅磚再生粉料水泥砂漿超音波速折減........85
圖4-58 溫度25-440℃紅磚再生粉料水泥砂漿超音波速折減........85
圖4-59 溫度25-580℃紅磚再生粉料水泥砂漿超音波速折減........86
圖4-60 溫度25-800℃紅磚再生粉料水泥砂漿超音波速折減........86
圖4-61 不同紅磚再生粉料取代比例水泥砂漿抗壓強度與超音波速回歸曲線..87
圖4-62 不同水灰比紅磚再生粉料水泥砂漿抗壓強度與超音波速迴歸曲線....87
圖4-63 高溫受熱後紅磚再生粉料水泥砂漿抗壓強度與超音波數迴歸曲線...87
圖5-1 磁磚再生粗粒料混凝土抗壓強度(a)w/c=0.4, (b)w/c=0.6.......96
圖5-2 磁磚再生粗粒料混凝土抗壓強度相對強度比(a)28 days, (b)91 days...97
圖5-3磁磚再生粗粒料混凝土高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6..98
圖5-4 磁磚再生粗粒料混凝土高溫受熱後之抗壓強度降低百分比(a)w/c=0.4, (b)w/c=0.6......... .................99
圖5-5 磁磚再生粗粒料混凝土高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4, (b)w/c=0.6......... .................100
圖5-6磁磚再生粗粒料混凝土高溫受熱後之抗壓強度折減率迴歸曲線(a)w/c=0.4,
(b)w/c=0.6......... .................. 101
圖5-7 磁磚再生粗粒料混凝土超音波速(a)w/c=0.4, (b)w/c=0.6........102
圖5-8 磁磚再生粗粒料混凝土高溫受熱後之超音波速(a)w/c=0.4,(b)w/c=0.6.. 103
圖5-9 磁磚再生粗粒料混凝土齡期28至91天之抗壓強度成長..... ..104
圖5-10 溫度25-105℃磁磚再生粗粒料混凝土抗壓強度變化........104
圖5-11 溫度25-300℃磁磚再生粗粒料混凝土抗壓強度折減........104
圖5-12 溫度25-440℃磁磚再生粗粒料混凝土抗壓強度折減.........105
圖5-13 溫度25-580℃磁磚再生粗粒料混凝土抗壓強度折減........105
圖5-14 溫度25-800℃磁磚再生粗粒料混凝土抗壓強度折減.........105
圖5-15 溫度25-300℃磁磚再生粗粒料混凝土超音波速折減.........106
圖5-16 溫度25-440℃磁磚再生粗粒料混凝土超音波速折減........106
圖5-17 溫度25-580℃磁磚再生粗粒料混凝土超音波速折減........106
圖5-18 溫度25-800℃磁磚再生粗粒料混凝土超音波速折減.........107
圖5-19 不同磁磚再生粗粒料取代比例混凝土抗壓強度與超音波速迴歸曲線.
圖5-20 不同水灰比磁磚再生粗粒料混凝土抗壓強度與超音波速迴歸曲線...108
圖5-21 高溫受熱後磁磚再生粗粒料混凝土抗壓強度與超音波數迴歸曲線.....109
圖5-22 磁磚再生細粒料混凝土抗壓強度(a)w/c=0.4, (b)w/c=0.6.......110
圖5-23 磁磚再生細粒料混凝土抗壓強度相對強度比(a)28 days, (b)91 days.....111
圖5-24 磁磚再生細粒料混凝土高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6.112
圖5-25 磁磚再生細粒料混凝土高溫受熱後之抗壓強度降低百分比(a)w/c=0.4,
(b)w/c=0.6......... .................113
圖5-26 磁磚再生細粒料混凝土高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4)
(b)w/c=0.6......... .................114
圖5-27磁磚再生細粒料混凝土高溫受熱後之抗壓強度折減率迴歸曲線(a)w/c=0.4,
(b)w/c=0.6......... .................115
圖5-28 磁磚再生細粒料混凝土超音波速(a)w/c=0.4, (b)w/c=0.6............116
圖5-29 磁磚再生細粒料混凝土高溫受熱後之超音波速(a)w/c=0.4, (b)w/c=0.6.117
圖5-30 磁磚再生細粒料混凝土齡期28至91天之抗壓強度成長......118
圖5-31 溫度25-105℃磁磚再生細粒料混凝土抗壓強度變化........118
圖5-32 溫度25-300℃磁磚再生細粒料混凝土抗壓強度變化........18
圖5-33 溫度25-440℃磁磚再生細粒料混凝土抗壓強度折減........119
圖5-34 溫度25-580℃磁磚再生細粒料混凝土抗壓強度折減........119
圖5-35 溫度25-800℃磁磚再生細粒料混凝土抗壓強度折減.........119
圖5-36 溫度25-300℃磁磚再生細粒料混凝土超音波速折減.........120
圖5-37 溫度25-440℃磁磚再生細粒料混凝土超音波速折減.........120
圖5-38 溫度25-580℃磁磚再生細粒料混凝土超音波速折減.......120
圖5-39 溫度25-800℃磁磚再生細粒料混凝土超音波速折減....... .121
圖5-40 不同磁磚再生細粒料取代比例混凝土抗壓強度與超音波速迴歸曲線..121
圖5-41 不同水灰比磁磚再生細粒料混凝土抗壓強度與超音波速迴歸曲線....122
圖5-42 高溫受熱後磁磚再生細粒料混凝土抗壓強度與超音波數迴歸曲線.....123
圖5-43 磁磚再生粉料水泥砂漿抗壓強度(a)w/c=0.4, (b)w/c=0.6........124
圖5-44 磁磚再生粉料水泥砂漿抗壓強度相對強度比(a)28 days, (b)91 days...125
圖5-45磁磚再生粉料水泥砂漿高溫受熱後之抗壓強度(a)w/c=0.4, (b)w/c=0.6.126
圖5-46 磁磚再生粉料水泥砂漿高溫受熱後之抗壓強度降低百分比(a)w/c=0.4,
(b)w/c=0.6......... .................127
圖5-47 磁磚再生粉料水泥砂漿高溫受熱後之抗壓強度迴歸曲線(a)w/c=0.4, (b)w/c=0.6........ .................128
圖5-48 磁磚再生粉料水泥砂漿高溫受熱後之抗壓強度折減率迴歸曲線(a)w/c=0.4,
(b)w/c=0.6........ .................129
圖5-49 磁磚再生粉料水泥砂漿超音波速(a)w/c=0.4), (b)w/c=0.6........130
圖5-50 磁磚再生粉料水泥砂漿高溫受熱後之超音波速(a)w/c=0.4, (b)w/c=0.6....131
圖5-51 磁磚再生粉料水泥砂漿齡期28至91天之抗壓強度成長.......132
圖5-52 溫度25-105℃磁磚再生粉料水泥砂漿抗壓強度成長........132
圖5-53 溫度25-300℃磁磚再生粉料水泥砂漿抗壓強度成長........132
圖5-54 溫度25-440℃磁磚再生粉料水泥砂漿抗壓強度成長........133
圖5-55 溫度25-580℃磁磚再生粉料水泥砂漿抗壓強度折減........133
圖5-56 溫度25-800℃磁磚再生粉料水泥砂漿抗壓強度折減........133
圖5-57 溫度25-300℃磁磚再生粉料水泥砂漿超音波速折減........134
圖5-58 溫度25-440℃磁磚再生粉料水泥砂漿超音波速折減.. ......134
圖5-59 溫度25-580℃磁磚再生粉料水泥砂漿超音波速折減.........134
圖5-60 溫度25-800℃磁磚再生粉料水泥砂漿超音波速折減........135
圖5-61 不同磁磚再生粉料取代比例水泥砂漿抗壓強度與超音波速.......135
圖5-62 不同水灰比磁磚再生粉料水泥砂漿抗壓強度與超音波速迴歸曲線...136
圖5-63 高溫受熱後磁磚再生粉料水泥砂漿抗壓強度與超音波數迴歸曲線....136


1.「再生混凝土施工規範草案之研擬」,內政部建築研究所協同研究報告,(2006)。
2.蘇南,王博麟,「廢混凝土回收粗粒料品質與再生混凝土工程性質之探討」,中國土木水利工程學刊,第12卷3期,(2000)pp.435-444。
3.Topcu, I.B. and S. Sengel, (2004) Properties of concretes produced with waste concrete aggregate, Cement Concrete Research, vol.34, 1307-1312.
4.Mukai, T., Kikuchi, M., and Koizumi, H., (1978) Fundamental study on bond properties between recycled aggregate concrete and steel bar, Cement Association of Japan, 32nd Review,.
5.Hansen, T.C., and Narud H., (1983) Strength of Recycled Concrete made from crushed concrete coarse aggregate, Concrete International, 5, 120-135.
6.Bernier, G., Malier, Y. and Mazars J., (1978) New material form concrete demolition waste, International conference on the use of By-products and waste in civil engineering 157-162.
7.Chen, H. J., T. Yen and K. H. Chen, (2003) Use of building rubbles as recycled aggregates, Cement and Concrete Research, 33 , 125-132.
8.Poon C. S. and D. Chan, (2006) Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates, Construction and Building Material, 21, 164-175.
9.Naceri, A., & Hamina, M. C., (2009). Use of waste brick as a partial replacement of cement in mortar, Waste Management, 29(8), 2378-2384.
10.de Brito, J., Pereira, A. S., & Correia, J. R. (2005). Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates, Cement and Concrete Composites, 27(4), 429-433.
11.Cachim, P. B. (2009). Mechanical properties of brick aggregate concrete, Construction and Building Materials, 23(3), 1292-1297.
12.Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate, Cement and Concrete Research, 35(4), 763-769.
13.F. Bektas, K. Wang, and H. Ceylan, (2009) Effect of crushed brick aggregate on mortar durability, Construction and Building Material, 23, 1909-1914.
14.Pacheco-Torgal, F., & Jalali, S., (2010). Reusing ceramic wastes in concrete, Construction and Building Materials, 24(5), 832-838.
15.Torkittikul, P., & Chaipanich, A., (2010). Utilization of ceramic waste as fine aggregate within portland cement and fly ash concretes, Cement and Concrete Composites, 32(6), 440-449.
16.Senthamarai, R., & Devadas Manoharan, P., (2005). Concrete with ceramic waste aggregate, Cement and Concrete Composites, 27(9-10), 910-913.
17.Cerný,R.; Totová,M.; Rovnaníková, P., (2003) Thermal and hygric properties of Portland cement mortar after high-temperature exposure combined with compressive stress, Cement and Concrete Research, 33(9), 1347-1355.
18.Wang,Xi-Shu; Wu,Bi-Sheng; Wang,Qing-Yuan. (2005). Online SEM investigation of microcrack characteristics of concretes at various temperatures, Cement and Concrete Research, 35(7), 1385-1390.
19.DeJong,Matthew J.; Ulm,Franz-Josef. (2007). The nanogranular behavior of C-S-H at elevated temperatures (up to 700 C), Cement and Concrete Research, 37(1), 1-12.
20.Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste, Cement and Concrete Research, 35(3), 609-613.
21.Igor Stubna, Anton Trink, Libor Vozar. (2007) Thermo mechanical analysis of quartz porcelain in temperature cycles, Ceramics International, 33(7), 1287-1291.
22.張郁慧 (1993),火害延時對混凝土材料性質之影響,(碩士論文,國立台灣工業技術學院)
23.Chan, Y. N., Peng, G. F., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cement and Concrete Composites, 21(1), 23-27.
24.Chan, Y. N., Luo, X., & Sun, W. (2000). Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C, Cement and Concrete Research, 30(2), 247-251.
25.陳姿菁 (2006),水泥漿及水泥砂漿受火害所造成微裂縫之研究,(碩士論文,國立成功大學,土木工程學系)
26.Chang, Y. F., Chen, Y. H., Sheu, M. S., & Yao, G. C. (2006). Residual stress-strain relationship for concrete after exposure to high temperatures. Cement and Concrete Research, 36(10), 1999-2005.
27.Xiao, J., & König, G. (2004). Study on concrete at high temperature in china--an overview, Fire Safety Journal, 39(1), 89-103.
28.Y. N. Chan, G. F. Peng, M. Anson, (1999) Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cement and Concrete Composites, 21, 23-27.
29.Sandor Popovics, Joseph L. Rose and John S. Popovics (1990) The behaviour of ultrasonic pulses in concrete, Cement and Concrete Composites, 20(2), 259-270.
30.Pessiki, P. .S., and Carino, N.J. (1988). Setting Time and Strength of Concrete Using the Impact-Echo Method , ACI Materials Journal, 85(5), 389-399.
31.Andersen Johannes and Nerenst Poul (1952) Wave Velocity in Concrete, ACI Journal, Proc. 48, 613-636.
32.Kaplan, M.F. (1952) Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete, Journal of ACI, 56(9), 853-867.
33.Kaplan, M.F. (1958) Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns, Journal of ACI, 54(8), 675-688.
34.Jones, R. (1954) Testing of Concrete by an Ultrasonic Pulse Technique, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Vol.1, Paper No.A-17, January 1954.
35.Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984) Pulse Velocity as a Measure of Concrete Compressive Strength, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984, 201-227.
36.郭世芳 (2007), 探討超音波速度與混凝土抗壓強度之關係與其應用,(博士論文, 中興大學,土木工程學系所)
37.楊竣傑 (2003), 應用類神經網路預測混凝土受高溫影響之強度折減, (碩士論文, 朝陽科技大學, 營建工程學系所)
38.Savva, A., Manita, P., & Sideris, K. K. (2005). Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates. Cement and Concrete Composites, 27(2), 239-248.
39.楊炫智 (2008), 非破壞檢測方法應用於高溫作用後混凝土結構之損害評估, (博士論文, 中興大學,土木工程學系所)
40.Yang, H., Lin, Y., Hsiao, C., & Liu, J. (2009). Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity. Fire Safety Journal, 44(1), 121-130.
41.ASTM C 597 (1992) Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards, Vol. 04.02., 1992.
42.基礎統計學, 陳順宇,鄭碧娥, 華泰書局。
43.統計學以Microsoft Excel為例,馬秀蘭,吳德邦 編著 2008。
44.Farid Debieb, Said Kenai, (2008) The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials, 22, 886-893.
45.F. Bektas, K. Wang, H. Ceylan,(2009) Effect of crushed brick aggregate on mortar durability, Construction and Building Material, 23, 1909-1914.
46.M. Saad, S.A. Abo-EI-Enein , G.B. Hanna and M.F. Kotkata, (1996) Effect of temperature on physical and mechanical properties of concrete containing silica fume, Cement and concrete Research, 26(5),. 669-675.
47.Böke,H., Akkurt,S., Ipekoglu,B., and Ugurlu,E. (2006) Characteristics of brick used as aggregate in historic brick-lime mortars and plasters, Cement and Concrete Research, 36(6),. 1115-1122.
48.Lavat,Araceli E.; Trezza,Monica A.; Poggi,Mónica, (2009) Characterization of ceramic roof tile wastes as pozzolanic admixture, Waste Management, 29(5),. 1666-1674.
49.Li,Min; Qian,ChunXiang; and Sun,Wei, (2004) Mechanical properties of high-strength concrete after fire, Cement and Concrete Research, 34(6), 1001-1005.
50.Luo,Xin; Sun,Wei; Chan,Sammy Yin Nin, (2000) Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete, Cement and Concrete Research, 30(3), 379-383.
51.Poon,C., Kou,S.; Wan,H.; and Etxeberria,M., (2009) Properties of concrete blocks prepared with low grade recycled aggregates, Waste Management, 29(8), 2369-2377.
52.Suzuki,Masahiro; Seddik Meddah,Mohammed; Sato,Ryoichi, (2009) Use of porous ceramic waste aggregates for internal curing of high-performance concrete, Cement and Concrete Research, 39(5), 373-381.
53.Terro,Mohamad J., (2006) Properties of concrete made with recycled crushed glass at elevated temperatures, Building and Environment, 41(5), 633-639.
54.Wattanasiriwech,D.; Saiton,A.; Wattanasiriwech,S., (2009) Paving blocks from ceramic tile production waste, Journal of Cleaner Production, 17(18), 1663-1668.
55.Xu,Y.; Wong,Y.L.; Poon,C.S.; Anson,M., (2001) Impact of high temperature on PFA concrete, Cement and Concrete Research, 31(7), 1065-1073.
56.石晏彰 (2006),火害後混凝土強度預測模式之比較研究,(碩士論文,朝陽科技大學,營建管理系)
57.陳弘儒 (2007),以不同比例之廢棄紅磚取代粗骨材對混凝土影響之研究, (碩士論文,中原大學,土木工程研究所)
58.廖譽勝 (2007),以廢棄紅磚取代細骨材對再生混凝土性質影響之研究, (碩士論文,中原大學,土木工程研究所)
59.黃俊育 (2008),使用廢棄紅磚製成之細粒料與泥粉對水泥砂漿影響之研究, (碩士論文,中原大學,土木工程研究所)
60.黃群凱 (2009),使用廢棄磁磚對再生混凝土性質影響之研究, (碩士論文, 中原大學,土木工程研究所)
61.王毓慶 (2009),以再生磁磚細骨材製成混凝土之研究, (碩士論文, 中原大學,土木工程研究所)
62.廖彥洋 (2008),廢棄磁磚製成細骨材與粉料應用於水泥砂漿之研究, (碩士論文, 中原大學,土木工程研究所)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top