跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/12 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱溥
研究生(外文):Yu-Pu Chen
論文名稱:利用光催化薄膜反應器及缺氧/好氧薄膜反應器處理光電產業有機廢水
論文名稱(外文):Combination of photocatalysis and A/O MBR for TFT-LCD organic wastewater treatment
指導教授:游勝傑
指導教授(外文):Sheng-Jie You
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:98
中文關鍵詞:光電產業有機廢水光催化二氧化鈦缺氧/好氧薄膜反應器
外文關鍵詞:A/O MBRTiO2PhotocatalysisTFT-LCD organic wastewater
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用光催化薄膜反應器及缺氧/好氧薄膜生物反應器 (A/O membrane bioreactor, A/O MBR) 處理光電有機廢水,並探討碳、氮成分廢水之處理效率。在光催化薄膜反應器方面,所控制的操作參數為不同UV 光照方式、槽體中pH 值與二氧化鈦添加量,在不同UV光照方式試驗,可以發現MEA降解效率與光照時間成正比關係。在不同pH值試驗時發現在鹼性環境下MEA降解效率較中性環境佳。也發現到TiO2添加量越多MEA的降解效率越高,當添加量達到1.0 g/l時MEA降解效率達到96%。由實驗結果可看出光催化薄膜反應器以全光照方式、pH值11及TiO2添加量1.0 (g/l)操作對處理光電產業有機廢水有最佳的處理效果。本研究另以不同迴流比 (0.5、1.5、2.5)為操作參數探討A/O MBR 之最佳迴流比,A/O MBR 在不同迴流比時對COD 、MEA 和氨氮均有極佳之處理效率,對上述三種有機化合物之去除率分別為98%、100%及100%。但對於TMAH之去除效果並不佳,推測為水力停留時間較短,使水中微生物還未適應以致於降解效率僅有38%。在不同迴流比下放流水之硝酸鹽濃度有著明顯差異,迴流比分別為0.5、1.5、2.5時放流水硝酸鹽平均濃度分別為12 mg/l、8 mg/l、 16 mg/l,迴流比1.5 時放流水硝酸鹽濃度較低,表示反應槽內脫硝及硝化作用較完整,因此挑選迴流比1.5為最佳操作條件。總體而言,光電有機廢水利用光催化薄膜反應器及A/O MBR 處理都有良好的效果,因此結合化學氧化及生物處理法來處理難分解或具抑制性之TFT-LCD製程有機廢水為一值得期待的方法。


In this work, photocatalytic membrane reactor and A/O membrane bioreactor (A/O MBR) was applied for the treatment of organic wastewater from electro-optical industry. In addition, the treatment efficiency of carbon and nitrogen containing wastewater were discussed. In this experiment of photocatalytic membrane reactor, the operational parameters were set as follows, different UV irradiation, pH value between 7~11, added amount of TiO2 (DegussaP25 TiO2) between 0~1.0 g/1. After repeated trials, the optimal operational conditions were full UV irradiation, pH vale = 11, added amount of TiO2 = 1.0 (g/1). The MEA degradation rate was 90%,93%, and 98% respectively. Different circulation ratios (0.5, 1.5, 2.5) were adopted as operational parameters for the discussion of the optimal circulation ratios for A/O MBR. A/O MBR has excellent treatment efficiency of COD, MEA, and ammonia, and the removal rate for the above mentioned organic compounds were 98%, 100%, and 100%, respectively. However, the removal efficiency of TMAH was not better. It was assumed that hydraulic retention time (HRT) was not long enough for the microorganism in water to adapt, therefore the degradation efficiency was only 38%. Under different circulation ratios, the concentration of nitrate varied significantly. The average nitrate concentration was 12 mg/l, 8 mg/l, 16 mg/l for the circulation rations of 0.5, 1.5, 2.5, respectively. When the circulation ratio was 1.5, the concentration of nitrate was lower, indicating the denitrification and nitrification were more complete. Therefore the circulation ratio=1.5 was chosen as the optimal operation condition. In conclusion, the treatment of wastewaters from electro-optical industry using photocatalytic membrane reactor and A/O MBR both had better removal efficiency. As a result, the combination of chemical oxidation with biological treatment provides an anticipating solution for the undegradable and inhibitive organic wastewater generated during TFT-LCD fabrication processes.


目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 薄膜液晶顯示器 (TFT-LCD) 產業製程有機廢水 4
2-1-1 TFT-LCD 廢水來源 4
2-1-2 TFT-LCD 製程有機廢水主要成分特性 5
2-2薄膜生物處理程序 12
2-3 光催化技術應用 17
2-3-1 光催化劑 17
2-3-2 TiO2光催化氧化原理 19
2-3-3 光催化的影響因素 21
第三章 實驗設備與方法 25
3-1 TFT-LCD 廠廢水特性分析 26
3-2 UV/TiO2光催化批次試驗求取最佳化操作條件 28
3-2-1不同UV光照方式試驗 28
3-2-2不同pH值及TiO2濃度試驗 29
3-3 建立整合式硝化薄膜反應器 32
3-4 實驗儀器與分析分法 33
第四章 結果與討論 34
4-1 UV/TiO2光催化批次試驗求取反應器之最佳操作條件 35
4-1-1 不同UV光照方式試驗 35
4-1-2 不同pH值試驗 40
4-1-3 不同TiO2濃度試驗 46
4-2 A/O MBR之最佳迴流比操作條件 51
4-2-1 馴養期水質監測結果 51
4-2-2 穩定期水質監測結果 54
4-2-2-1 迴流比為0.5時水質監測結果 54
4-2-2-2 迴流比為1.5時水質監測結果 59
4-2-2-3 迴流比為2.5時水質監測結果 64
4-2-3 綜合比較 69
4-2-3-1 不同迴流比下對MEA與TMAH之去除效能 69
4-2-3-2 不同迴流比下對氮之去除效能 72
4-3整合式硝化薄膜反應器效率評估 77
第五章 結論與建議 81
5-1 結論 81
5-2 建議 82
參考文獻 83





圖目錄
圖 2-1 MEA之分解機制 8
圖 2-2 TMAH之代謝途徑 9
圖 2-3 氮的循環 11
圖 2-4 傳統活性污泥法及MBR 之處理程序流程 13
圖 2-5 側流式(sidestream)薄膜單元 15
圖 2-6 沉浸式(submerged)薄膜單元 15
圖 2-7 半導體受光激發產生光電子及電洞示意圖 20
圖 3-1 研究架構 25
圖 3-2 UV/TiO2光催化批次試驗裝置示意圖 29
圖 3-3 光催化混合薄膜反應槽示意圖 30
圖 3-4 整合式硝化反應槽 33
圖 4-1 不同光照方式對於降解MEA之變化 36
圖 4-2 不同光照方式MEA降解效率 37
圖 4-3 以全光照為基準之MEA降解效率 38
圖 4-4 不同光照方式對於降解NH4-N之變化 39
圖 4-5 TiO2顆粒在各pH下之平均粒徑分布 41
圖 4-6 不同pH下薄膜與Ti02等電點之變化 41
圖 4-7 不同pH值對於降解MEA之變化 42
圖 4-8 不同pH值MEA降解效率 43
圖 4-9 以pH11為基準之MEA降解效率 44
圖 4-10 不同pH值對於降解NH4-N之變化 45
圖 4-11 不同TiO2添加量對於降解MEA之化 46
圖 4-12 不同TiO2添加量MEA降解效率 47
圖 4-13 以TiO2添加1.0 mg/l為基準之MEA降解效率 48
圖 4-14 不同TiO2添加量對於降解NH4-N之變化 49
圖 4-15 連續監測A/O MBR中MLSS 52
圖 4-16 連續監測A/O MBR中進出流水COD 52
圖 4-17 連續監測A/O MBR中pH、DO、濁度 53
圖 4-18 迴流比0.5時COD進出流水監測 54
圖 4-19 迴流比0.5時MEA進出流水監測 55
圖 4-20 迴流比0.5時TMAH進出流水監測 56
圖 4-21 迴流比0.5時NH4-N進出流水監測 56
圖 4-22 迴流比0.5時NO2-N進出流水監測 57
圖 4-23 迴流比0.5時NO3-N進出流水監測 58
圖 4-24 迴流比1.5時COD進出流水監測 59
圖 4-25 迴流比1.5時MEA進出流水監測 60
圖 4-26 迴流比1.5時TMAH進出流水監測 60
圖 4-27 迴流比1.5時NH4-N進出流水監測 61
圖 4-28 迴流比1.5時NO2-N進出流水監測 62
圖 4-29 迴流比1.5時NO3-N進出流水監測 62
圖 4-30 迴流比2.5時COD進出流水監測 64
圖 4-31 迴流比2.5時MEA進出流水監測 65
圖 4-32 迴流比2.5時TMAH進出流水監測 65
圖 4-33 迴流比2.5時NH4-N進出流水監測 66
圖 4-34 迴流比2.5時NO2-N進出流水監測 67
圖 4-35 迴流比2.5時NO3-N進出流水監測 67
圖 4-36 A/O MBR 對MEA的去除效果 70
圖 4-37 A/O MBR 對TMAH的去除效果 71
圖 4-38 A/O MBR 對NH4-N的去除效果 72
圖 4-39 A/O MBR 對NO2-N的去除效果 74
圖 4-40 A/O MBR 對NO3-N的去除效果 74
圖 4-41 光催化薄膜反應器降解有機廢水之總有機碳(TOC)變化 78
圖 4-42 光催化薄膜反應器降解有機廢水之化學需氧量(COD)變化 78

表目錄
表 2-1 TFT-LCD製程廢水水質 6
表 2-2 MEA之特性 7
表 2-3 銳鈦礦與金紅石之物理特性比較 18
表 2-4 不同半導體其能帶隙能量與受激發所需最大波長 22
表 3-1 TFT-LCD 廢水廠廢水水質分析結果 27
表 3-2 光催化反應槽操作參數 31
表 3-3 A/O MBR 操作條件 32
表 4-1 迴流比0.5時去除效率表 58
表 4-2 迴流比1.5時去除效率表 63
表 4-3 迴流比2.5時去除效率表 68
表 4-4 不同迴流比下A/O MBR對MEA、TMAH去除效果比較表 75
表 4-5 不同迴流比下A/O MBR對氮係物質去除效果比較表 76
表 4-6 整合式硝化薄膜反應器各程序對碳氮物質去除效果比較表 80

1.Amann, RI. and Schleifer, KH. , “Phylogenetic identification and in situ detection of individual microbial cells without cultivation, ” Microbiological Reviews, 59: 143-169.(1995)
2.Bilous, PT. and Weiner,JH. , “Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101, ” Journal of Bacteriology, 162(3): 1151-1155.( 1985)
3.Bradbeer, C. , “The Clostridial Fermentations of Choline and Ethanolamine I. Preparation and Properties of cell-free extracts, ” The Journal of Biological Chemistry, 240(12): 4669-4674.(1965)
4.Brindle, K. and Stephenson, T. ,“The application of membrane biological reactors for the treatment of wastewaters,” Biotechnol. Bioeng. 49 601-610(1996).
5.Chang, S., P. Le Clech, B. Jefferson and S. Judd,Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. –ASCE, 128, 1018–1029 (2002).
6.Chen, TK., Ni, CH. and Chen, JN. , Nitrification-Denitrification of optoielectronic industrial wastewater by anoxic/aerobic process, Journal of Environmental Science and Health, A38 (10): 2157-2167.( 2003)
7.Chen, TK. and Chen, JN. , Combined membrane bioreactor (MBR) and reverse osmosis (RO) system for thin-film transistor - Liquid crystal display TFT-LCD, industrial wastewater recycling, Water Science and Technology, 50(2): 99-106.( 2004)
8.Chen, YH., Huang, CW., Ou, TK., Ju, WC. and Huang, CC., Detecting the polyaromatic hydrocarbon open-rung enzyme catechol 2,3-dioxygenase of petroleum by real-time PCE, International Symposium of Environmental Biotechnologies on Bioenergy and Bioremediation, 161-162.(2004)
9.Chen, TK., Ni, CH., Chan, YC. and Lu,MC., MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling, Water Science and Technology, 51(6-7): 411-419.( 2005)
10.Cheryan M.,”Ultrafiltration and Microfiltration Handbook” Technomic Publishing Company, Lancaster,(1998).
11.Chin ,S.S,Lim,T.M.,Chiang,K.,Fane,A.G.,Hybird Low-pressure Submerged Membrane Photoreactor For The Removal of Bisphenol,Desalination,202,page253-261(2005).
12.Dagan, G., Tomkiewicz, M. J. Phys. Chem., 97, Pages 12651 (1993).
13.Dorigo, U., Volatier, L. and Humbert, JF., Molecular approaches to the assessment of biodiversity in aquatic microbial communities, Water Research, 39(11): 2207-2218.( 2005)
14.Fujishima A., Honda K. “Electrochemical Photolysis of Water at Semiconductor Electrode Nature” Nature, 238, Pages 37(1972).
15.Fukushima, K., Yamada, I. J. Appl. Phys., 65, Pages 619(1989).
16.Gültekin, I. and N.H. Ince. ,Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of α-substituents Ultrasonics Sonochemistry, Volume 13(3), pages 208-214(2006).
17.Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A. and Ikeda, M., An efficient treatment technique for TMAH wastewater by catalytic oxidation, IEEE Transactions on Semiconductor Manufacturing, 14(3): 202-205.( 2001)
18.Hoffmann, M. R., Martin S. T., Choi W. and Bahnemann D. W., “Environmental application of semiconductor photocatalysis.” Chem. Rev. Vol 95, Pages 69-96(1995).
19.Hoffmann, M.R., S.T. Martin, W. Choi and D.W. Bahnemann. , Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1), Pages. 69–96(1995).
20.Hwang, K.T., Lee,H.S. ,Lee, S.H., Chung, K.C., Park, S.S., Lee ,J.H. , Synthesis of aluminium hydrates by a precipitation method and their use in coatings for ceramic membranes Journal of the European Ceramic Society, Volume 21, Issue 3, Pages 375-380(2001).
21.Jacangelo J. G., Laine J. M., Cumming E. W., and Adham S. S. ,UF with Pretreatment for Removing DBP Precursors. Journal of American Water Works Association, 87, pages 100-115(1995).
22.Jang N.J., Ren X. , Kim G. , Ahn C. and Kim S., ”Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse”,Desalination,202,pages 90(2007).
23.Joseph G. Jacangelo, R. Rhodes Trussell, Montgomery Watson. , Role of membrane technology in drinking water treatment in the United States Desalination, Volume 113, Issues 2-3, Pages 119-127(1997).
24.Judd, S. ,The MBR book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Elsevier, Oxford London(2006).
25.Kamat, P. V., Dawson, A. J. Phys. Chem. B., 105, Pages 960(2001).
26.Kim,S.N. and Chang,I.S.,”Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance” Process Biochemical,40,1307(2005).
27.Knapp, JS., Jenkey, ND. and Townsley, CC., The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium, Biodegradation, 7(3): 183-189.( 1996)
28.Koito, T., Tekawa, M. and Toyoda, A., A novel treatment technique for DMSO wastewater, IEEE Transactions on Semiconductor Manufacturing, 1(11): 3-8.( 1998)
29.Konstantinou I.K. and T.A. Albanis. ,TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review, Appl. Catal. B: Environ. 49(1), Pages 1-14(2004).
30.Lee, W., Kang, S., Shin, H. , Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 216, 217–227(2003).
31.Lin, YC., Tseng, IC. and Liu, YF., , Using specific primer and PCR-DGGE techniques to detect Psedomonas populations, The 2nd International Symposium of Environmental Biotechnologies on Bioremediation, 66-67.( 2005a)
32.Lin, YC., Tseng, IC., and Liu, YF., , Biomonitoring of microbial community in diesel-contaminated site, The 2nd International Symposium of Environmental Biotechnologies on Bioremediation, 68-69. (2005b)
33.Linsebigler, A. L., G. Lu and J. T. Yates. , Review- Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemisity Review., 95(3), Pages 735–758(1995).
34.Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby . ,Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism Applied And Environmental Microbiology, Vol. 65, No. 9, Pages 4094–4098(1999).
35.Melin, T., B. Jefferson, D. Bioxio, C. Thoeye, W. De. Wilde, J. De Koning, J. Van der Graaf and T. Wintgens ,Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187, 271-282(2006).
36.Meng, F., S. R. Chae, A. Drews, M. Kraume, H. S. Shinand F. Yang. ,Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material Water Research,43(6),pages 1489-1512(2009).
37.Moulin, P., Rouch, J. C., Serra, C. M. Clifton, J. P. Aptel, Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes, Journal of Membrane Science, Volume 114, Issue 2, Pages 235-244(1996).
38.Narrod, SA., and Jakoby, WB., Metabolism of ethanolamine. An ethanolamine oxidase, The Journal of Biological Chemistry, 239(7): 2189-2193.( 1964)
39.Ndegwa, AE., Ron, CK., Wong, A., Chu, L., Bentley, R. and Stuart, RD., Degradation of monoethanolamine in soil, Journal of Environmental Engineering and Science, 3: 137-145.( 2004)
40.Ravanchi, M. T., T. Kaghazchi and A. Kargari. ,Application of membrane separation processes in petrochemical industry: a review. Desalination, 235(1-3), 199-244(2009).
41.Shon,H.K. S., Phuntsho, S. Vigneswaran, Effect of photocatalysis on the membrane hybrid system for wastewater treatment, Desalination , 225, Pages 235–248 , (2008).
42.Stephenson T., Judd S., Jefferson B. and Brindle K. ,Membrane bioreactors for wastewater treatment. IWA Publishing. London(2000).
43.Takako, MN., Kirimura, K. and Kino, K., Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217, Biochemical Engineering Journal, 15(3): 199-204.( 2003)
44.Tian, J. Y., H. Liang, J. Nan, Y.L. Yang, S. J. You and G. B. Li ,Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water. Chemical Engineering Journal, 148(2-3), 296-305(2009).
45.Visvanathan, C., Aim, R.B. and Parameshwaran, K. ,“Membrane separation bioreactor for wastewater treatment,” Crit. Rev. Environ. Sci. Technol. 30 1-48(2000).
46.Williams, M. D. and M. Pirbazari ,Membrane bioreactor process for removing biodegradable organic matter from water. Water Research. 41(17), 3880-3893, (2007).
47.Ye Y., Le-Clech P., Chen V., Fane A.G. ,Evolution of fouling during crossflow filtration of model EPS solutions. J. Member. Sci, 264 190-199(2005).
48.Zhu, C., Wang, L., Kong, L., Yang, X., Wang, L., Zheng, S., Chen, F., Feng, MZ. and Huang, Z., Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution, Chemosphere, 41(3): 303-309.( 2000)
49.Ronald L. Droste原著;林正芳、林瑤勤、羅棋穎等譯,水及廢水處理理論與實務(2002).
50.高濂、鄭珊、張青紅編著,奈米光觸媒(2004).
51.蘇俊鐘編著,光觸媒(Photocatalyst)(2003).
52.林有銘編著,無所不在的環境清潔工─奈米光觸媒(2006).
53.傅宏剛、王建強、王哲、閆鵬飛、于海濤,TiO2光催化劑表面修飾研究進展,黑龍江大學化學化工學院,黑龍江大學自然科學學報,Sept. Vol.18 No.3(2001).
54.吳文群,含氧碳氫化合物在TiO2粉末表面上的吸附與光反應研究,成功大學(2000).
55.王國華,以二氧化鈦懸浮膠體顆粒去除2-氯酚之光分解反應研究,國立中興大學(1991).
56.呂仁明,以紫外線/二氧化鈦程序處理2-氯酚溶液反應行為之研究,國立臺灣工業技術學院(1993).
57.吳致誠,UV/TiO2程序中氫氧自由基之生成研究,國立中興大學(2002).
58.黃碧瑩,TiO2與Pt/TiO2系統對單氯酚光分解之研究,國立中興大學碩士論文。(2002)
59.倪振鴻、陳廷光、陳治欣、陳重男,國內第一座沉浸式生物薄膜程序廢水處理廠處理TFT-LCD製程有機廢水回收再利用之長期操作經驗,產業環保工程實務技術研討會。(2003)
60.鄭幸雄、楊雅斐、黃良銘,三段式生物程序處理PAN廢水好氧硝化槽硝化菌生態變化,第二十九屆廢水處理技術研討會,台南。(2004)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊