跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋威德
研究生(外文):Wei-Der Sung
論文名稱:加裝擋板之葉片式旋轉填充床特性之研究
論文名稱(外文):Characteristics of Blade-Packing Rotating Packed Bed with Baffles
指導教授:陳昱劭
指導教授(外文):Yu-Shao Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:196
中文關鍵詞:旋轉填充床壓降質傳葉片擋板吸收
外文關鍵詞:AbsorptionRotating Packed BedPressure DropMass TransferBladeBaffles
相關次數:
  • 被引用被引用:2
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
加裝擋板葉片式旋轉填充床之特性至今尚未被建立,因此在本實驗中研究此系統之壓降,並以吸收揮發性有機物(VOCs)實驗得到去除率及總括體積氣膜質傳係數(KGa),探討轉速、氣體流率、液體流率、擋板及填充物對上述特性之影響。此外,首次建立此系統壓降與總括體積氣膜質傳係數之迴歸式。
由實驗結果得知,壓降隨轉速及氣體流率增加而上升,液體流率提高對壓降影響並不明顯,因為在離心力下液體滯留量較小。除此之外,濕床壓降小於乾床壓降,而且有擋板系統之壓降小於無擋板系統,減少約33~59%。和各式結構旋轉填充床相比,擋板葉片式旋轉填充床之壓降為最小。KGa隨著轉速、氣體流率及液體流率增加而上升,使用低亨利常數VOC時,KGa受氣體流率影響較大、液體流率影響較小;但使用高亨利常數VOC時,情況則相反,而使用有擋板系統之KGa較無擋板系統大。此外,修正過後之質傳係數較葉片式旋轉填充床大,可提升約56%。
將實驗結果求出壓降及質傳迴歸式,其中質傳迴歸式包含考慮亨利常數之影響,可合理預測在不同操作條件下,加裝擋板葉片式旋轉填充床之總括氣膜體積質傳係數。


The characteristic of blade-packing rotating packed bed with baffles has not yet been established. Therefore, this study examined the pressure drop, removal efficiency and the overall volumetric gas-side mass transfer coefficient (KGa) in blade-packing rotating packed bed with baffles by absorption of VOCs. These characteristics were investigated with the effects of rotational speed, gas flow rate, liquid flow rate, baffles and packing. Besides, the correlations of KGa and pressure drop were proposed for the blade-packing rotating packed bed with baffles for the first time.
According to the experimental results, the pressure drop increased with increasing gas flow rate and rotational speed, and was not significantly affected by liquid flow rate. In addition, the pressure drop in a wet bed is lower than that in a dry bed. For the effect of baffles, it is found that a 33~59% reduction on pressure drop could be achieved in a bed with baffles. Compare with other types of rotating packed bed, the pressure drop of blade-packing rotating packed bed with baffles is the smallest. In the VOCs absorption process, the KGa increased with increasing rotational speed, gas flow rate and liquid flow rate. When using the VOC with low Henry's law constant, the KGa was found influenced more significantly by gas flow rate when compared with a VOC with high Henry's law constant. Rotating packed bed with baffles shows better mass transfer efficiency compared to a bed without baffles. Besides, the corrected mass transfer coefficient in a blade-packing rotating packed bed with baffles was about 56% higher than that in a blade-packing rotating packed bed.
Based on the experimental results, correlations for pressure drop and mass transfer coefficient were developed. The correlation of KGa including Henry’s law constant into could reasonably predict the overall volumetric gas-side mass transfer coefficient under different operation conditions.


目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧 3
2-1-1 揮發性有機物之簡介 3
2-1-2 揮發性有機物對人體之影響 6
2-1-3 揮發性有機物廢氣處理方法 9
2-2 超重力旋轉填充床 11
2-2-1旋轉填充床之簡介 11
2-2-1-1 逆流式旋轉填充床 13
2-2-1-2 錯流式旋轉填充床 14
2-2-1-3 葉片型旋轉填充床(Blade packing) 15
2-2-1-4 Zigzag旋轉填充床 16
2-2-1-5 Split packing旋轉填充床 17
2-2-2 旋轉填充床之特性 19
2-2-2-1 壓降 19
2-2-2-2 液體流動型態 25
2-2-2-3 有效質傳界面積 28
2-2-2-4 氣膜質傳係數 30
2-2-3 旋轉填充床之應用 34
2-2-3-1 吸收 34
2-2-3-2 氣提 36
2-2-3-3 蒸餾 37
2-2-3-4 微觀混合 38
2-2-3-5 製備奈米顆粒 40
第三章 實驗與分析方法 46
3-1 實驗裝置 46
3-2 實驗方法 54
3-2-1 壓降測量 54
3-2-2 吸收實驗 56
3-3 總括氣膜體積質傳係數分析 58
3-3-1 氣膜質傳係數之求法 58
第四章 結果與討論 61
4-1 壓降特性 61
4-1-1 轉速之影響 61
4-1-2 氣體流率之影響 63
4-1-3 液體流率之影響 65
4-1-4擋板有無對壓降之影響 67
4-1-5 環狀填充物之壓降 75
4-1-6壓降之迴歸式 82
4-1-7 各種旋轉填充床壓降之比較 85
4-2 吸收特性(去除率, E) 87
4-2-1 轉速之影響 87
4-2-2 氣體流率之影響 91
4-2-3 液體流率之影響 95
4-2-4 擋板有無對吸收之影響 99
4-2-5 環狀填充物之吸收 105
4-3 吸收特性(總括體積氣膜質傳係數, KGa) 110
4-3-1 轉速之影響 110
4-3-2 氣體流率之影響 114
4-3-3 液體流率之影響 118
4-3-4葉片式旋轉填充床有無擋板之影響 122
4-3-5 有擋板之環狀填充物吸收 125
4-3-6 總括氣膜體積質傳係數之迴歸式 130
4-3-7 各式旋轉填充床質傳係數之比較 133
第五章 結論 137
參考文獻 140
符號說明 147
附錄A 空氣/水系統之壓降實驗數據 150
附錄B 吸收VOCs之KGa實驗數據 162
附錄C Matlab求迴歸式之程式碼(壓降) 175
附錄D Matlab求迴歸式之程式碼(質傳) 178
附錄E VOCs之校正曲線 181

圖目錄
圖2-2-1.1 逆流式旋轉填充床 (Liu et al., 1996) 13
圖2-2-1.2 錯流式旋轉填充床 (Guo et al., 1997) 14
圖2-2-1.3 葉片型旋轉填充床 (Lin and Jian, 2007) 15
圖2-2-1.4 Zigzag旋轉填充床 (Wang et al., 2008) 16
圖2-2-1.5 Split packing旋轉填充床 (Chandra et al., 2005) 17
圖2-2-1.6 Split packing之設計 (Chandra et al., 2005) 18
圖2-2-2.1不同操作狀態壓降實驗結果(Keyvani and Garder, 1989) 20
圖2-2-2.2 氣液流量對壓降的影響 (Singh et al., 1992) 21
圖2-2-2.3 孔隙度對壓降之影響 (Rao et al., 2004) 22
圖2-2-2.4 錯流式同心環旋轉床 (Wang et al., 2009) 23
圖2-2-2.5 兩種不同型式之旋轉擋板 (Ji et al., 2010) 24
圖2-2-2.6 液體於旋轉填充床內三種流動形式 (Burns and Ramshaw, 1996) 25
圖2-2-2.7 在填充床中之液體分佈 (Burns and Ramshaw, 1996) 26
圖2-2-2.8 固定擋板於旋轉填充床中 (Li and Liu, 2010) 32
圖2-2-3.1 預先混合分佈器示意圖 39
圖2-2-3.2 IS-RPB之結構圖 39
圖3-1.1 加裝擋板之葉片式旋轉填充床 47
圖3-1.2 使用光學顯微鏡觀察不銹鋼沖孔片(a)低倍率(b)高倍率 48
圖3-1.3 填充床主體之示意圖(a)轉盤與葉片(b)上蓋與擋板 49
圖3-1.4 葉片於填充床中之分佈圖 49
圖3-1.5 擋板於上蓋之分佈圖 50
圖3-1.6 環狀填充物構造圖 50
圖3-2-1.1 測量壓降實驗裝置圖 55
圖3-2-2.1 以水吸收氣相揮發性有機物實驗流程圖 57
圖3-3-1.1 旋轉填充床之床體示意圖 58
圖4-1-1.1 不同氣體流率下轉速對壓降的影響 62
圖4-1-1.2 不同液體流率下轉速對壓降的影響 62
圖4-1-2.1不同轉速下氣體流率對壓降的影響 64
圖4-1-2.2 不同液體流率下氣體流率對壓降的影響 64
圖4-1-3.1不同氣體流率下液體流率對壓降的影響 66
圖4-1-3.2不同轉速下液體流率對壓降的影響 66
圖4-1-4.1 有擋板及無擋板液體流率變化下轉速對壓降的影響 69
圖4-1-4.2有擋板及無擋板氣體流率變化下轉速對壓降的影響 69
圖4-1-4.3有擋板及無擋板轉速變化下氣體流率對壓降的影響 70
圖4-1-4.4有擋板及無擋板液體流率變化下氣體流率對壓降的影響 70
圖4-1-4.5有擋板及無擋板氣體流率變化下液體流率對壓降的影響 71
圖4-1-4.6有擋板及無擋板轉速變化下液體流率對壓降的影響 71
圖4-1-5.1葉片式及環狀填料液體流率變化下轉速對壓降的影響 76
圖4-1-5.2葉片式及環狀填料氣體流率變化下轉速對壓降的影響 76
圖4-1-5.3葉片式及環狀填料轉速變化下氣體流率對壓降的影響 77
圖4-1-5.4葉片式及環狀填料液體流率變化下氣體流率對壓降的影響 77
圖4-1-5.5葉片式及環狀填料氣體流率變化下液體流率對壓降的影響 78
圖4-1-5.6葉片式及環狀填料轉速變化下液體流率對壓降的影響 78
圖4-1-6.1 利用(Lin and Jian, 2007)迴歸式計算結果 83
圖4-1-6.2 壓降實驗值與迴歸式4-1-6.1和4-1-6.4計算結果比較 84
圖4-2-1.1 轉速對去除率之影響(QG=10L/min and QL=0.2L/min) 88
圖4-2-1.2 轉速對去除率之影響(QG=10L/min and QL=0.4L/min) 88
圖4-2-1.3 轉速對去除率之影響(QG=20L/min and QL=0.2L/min) 89
圖4-2-1.4 轉速對去除率之影響(QG=20L/min and QL=0.4L/min) 89
圖4-2-2.1 氣體流率對去除率之影響(ω=600rpm and QL=0.2L/min) 92
圖4-2-2.2 氣體流率對去除率之影響(ω=600rpm and QL=0.4L/min) 92
圖4-2-2.3 氣體流率對去除率之影響(ω=1800rpm and QL=0.2L/min) 93
圖4-2-2.4 氣體流率對去除率之影響(ω=1800rpm and QL=0.4L/min) 93
圖4-2-3.1 液體流率對去除率之影響(ω=600rpm and QG=10L/min) 96
圖4-2-3.2 液體流率對去除率之影響(ω=600rpm and QG=40L/min) 96
圖4-2-3.3 液體流率對去除率之影響(ω=1800rpm and QG=10L/min) 97
圖4-2-3.4 液體流率對去除率之影響(ω=1800rpm and QG=40L/min) 97
圖4-2-4.1 吸收異丙醇時,有擋板及無擋板不同液體流率下轉速對去除率之影響 100
圖4-2-4.2 吸收異丙醇時,有擋板及無擋板不同轉速下氣體流率對去除率之影響 101
圖4-2-4.3 吸收異丙醇時,有擋板及無擋板不同氣體流率下液體流率對去除率之影響 101
圖4-2-5.1 吸收異丙醇時,葉片式及環狀填料不同液體流率下轉速對去除率之影響 107
圖4-2-5.2 吸收丙酮時,葉片式及環狀填料不同液體流率下轉速對去除率之影響 107
圖4-2-5.3 吸收異丙醇時,葉片式及環狀填料不同轉速下氣體流率對去除率之影響 108
圖4-2-5.4 吸收丙酮時,葉片式及環狀填料不同液體流率下氣體流率對去除率之影響 108
圖4-2-5.5 吸收異丙醇時,葉片式及環狀填料不同氣體流率下液體流率對去除率之影響 109
圖4-2-5.6 吸收丙酮時,葉片式及環狀填料不同氣體流率下液體流率對去除率之影響 109
圖4-3-1.1 轉速對KGa之影響(QG=10L/min and QL=0.2L/min) 111
圖4-3-1.2 轉速對KGa之影響(QG=10L/min and QL=0.4L/min) 111
圖4-3-1.3 轉速對KGa之影響(QG=20L/min and QL=0.2L/min) 112
圖4-3-1.4 轉速對KGa之影響(QG=20L/min and QL=0.4L/min) 112
圖4-3-2.1 氣體流率對KGa之影響(ω=600rpm and QL=0.2L/min) 115
圖4-3-2.2氣體流率對KGa之影響(ω=600rpm and QL=0.4L/min) 115
圖4-3-2.3氣體流率對KGa之影響(ω=1800rpm and QL=0.2L/min) 116
圖4-3-2.4氣體流率對KGa之影響(ω=1800rpm and QL=0.4L/min) 116
圖4-3-3.1 液體流率對KGa之影響(ω=600rpm and QG=10L/min) 119
圖4-3-3.2 液體流率對KGa之影響(ω=600rpm and QG=40L/min) 119
圖4-3-3.3 液體流率對KGa之影響(ω=1800rpm and QG=10L/min) 120
圖4-3-3.4 液體流率對KGa之影響(ω=1800rpm and QG=40L/min) 120
圖4-3-4.1吸收異丙醇時,有擋板及無擋板液體流率變化下轉速對KGa之影響 123
圖4-3-4.2吸收異丙醇時,有擋板及無擋板轉速變化下氣體流率對KGa之影響 124
圖4-3-4.3吸收異丙醇時,有擋板及無擋板氣體流率變化下液體流率對KGa之影響 124
圖4-3-5.1吸收異丙醇時,葉片式及環狀填料氣體流率變化下轉速對KGa之影響 127
圖4-3-5.2 吸收丙酮時,葉片式及環狀填料氣體流率變化下轉速對KGa之影響 127
圖4-3-5.3 吸收異丙醇時,葉片式及環狀填料轉速變化下氣體流率對KGa之影響 128
圖4-3-5.4 吸收丙酮時,葉片式及環狀填料轉速變化下氣體流率對KGa之影響 128
圖4-3-5.5 吸收異丙醇時,葉片式及環狀填料氣體流率變化下液體流率對KGa之影響 129
圖4-3-5.6 吸收丙酮時,葉片式及環狀填料氣體流率變化下液體流率對KGa之影響 129
圖4-3-6.1 實驗KGa值與迴歸式結果比較 132

表目錄
表2-1-1.1 揮發性有機物之定義 3
表2-1-1.2 揮發性有機物排放特性與排放源之分類 (江, 1993) 5
表2-1-2.1 暴露於揮發性有機物下人體之反應 (侯, 2001) 8
表2-2.1 旋轉填充床之構造與演進 41
表2-2.2 旋轉填充床應用於氣液吸收系統 42
表2-2.2 旋轉填充床應用於氣液吸收系統(續) 43
表2-2.3 旋轉填充床應用於氣液氣提、蒸餾系統 44
表2-2.4 旋轉填充床應用於液液系統製備奈米顆粒 45
表3-1.1 旋轉填充床、葉片及擋板之規格 51
表3-1.2 三種VOCs的亨利常數與擴散係數(Chen et al., 2008) 53
表4-1-4.1 有無擋板時轉速提高造成壓降下降之百分比 72
表4-1-4.2 有無擋板時氣體流率提高造成壓降下降之百分比 73
表4-1-4.3 有無擋板時液體流率提高造成壓降下降之百分比 74
表4-1-5.1改變填充物時轉速提高造成壓降下降之百分比 79
表4-1-5.2 改變填充物時氣體流率提高造成壓降下降之百分比 80
表4-1-5.3 改變填充物時液體流率提高造成壓降下降之百分比 81
表4-1-7.1 各種形式旋轉填充床之規格及操作條件 86
表4-2-1.1 液體由0.2增加至0.4L/min所增加之去除率(QG=10L/min) 90
表4-2-2.1 液體由0.2增加至0.4L/min所增加之去除率(ω=600rpm) 94
表4-2-3.1 轉速由600增加至1800rpm所增加之去除率(QG=10L/min) 98
表4-2-4.1 有無擋板時轉速提高造成去除率增加之百分比 102
表4-2-4.2 有無擋板時氣體流率提高造成去除率增加之百分比 103
表4-2-4.3 有無擋板時液體流率提高造成去除率增加之百分比 104
表4-3-1.1 於不同操作條件下轉速的冪次x值 113
表4-3-2.1 於不同操作條件下氣體流率的冪次y值 117
表4-3-3.1 於不同操作條件下液體流率的冪次z值 121
表4-3-6.1 文獻中旋轉填充床其無因次群冪次比較 132
表4-3-7.1比較各種形式旋轉填充床之規格、操作條件及KGa 135
表4-3-7.2 各文獻中氣體、液體及葛拉修數之冪次 136


參考文獻
環保署網站, www.epa.gov.tw

江憲宗,「特定區域揮發性有機物之涵容能力與管制策略研究」,逢甲大學環境工程與科學學系研究所碩士論文,1993

侯裕文,「應用Fugacity模式簡化風險評估之可行性研究¬一以石化工業區為例」,雲林科技大學環境與安全工程技術研究所碩士論文,2001

新竹縣環境保護局「新竹工業園區空氣品質改善規劃書」,1999

Burns, J. R. and C. Ramshaw; “Process Intensification: Visual Study of Liquid Maldistribrtion in Rotating Packed Beds,” Chem. Eng. Sci., 51, 1347 (1996)

Chandra, A., P. S. Goswami and D. P. Rao; ”Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing,” Ind. Eng. Chem. Res., 44, 4051 (2005)

Chen, Y. S. and H. S. Liu; “Absorption of VOCs in a Rotating Packed Bed,” Ind. Eng. Res., 41, 1583 (2002)

Chen, Y. S., C. C. Lin and H. S. Liu, “Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and non-Newtonian Fluids,” Ind. Eng. Chem. Res., 44, 1043 (2005)

Chen, Y. S., C. Y. Tai, M. H. Chang and H. S. Liu; “Characteristics of Micromixing in a Rotating Packed Bed,” J. Chin. Inst. Chem. Engrs., 37, 63 (2006)

Chen, Y. S., Y. C. Hsu, C. C. Lin, Y. D. Tai and H. S. Liu, ”Volatile Organic Compounds Absorption in Cross-Flow Rotating Packed Bed” Environ. Sci. Technol., 42, 2631 (2008)

Chen, Y. S., Y. H. Wang, H. S. Liu, K. Y. Hsu and C. Y. Tai, “Micronization of p-Aminosalicylic Acid Particles Using High-Gravity Technique” Ind. Eng. Chem. Res., 49, 8832 (2010)

Chen, Y. S, “Correlations of Mass Transfer Coefficients in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 50, 1778(2011)

Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang and C. Zheng; “Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation,” Ind. Eng. Chem. Res., 39, 948 (2000)

Chen, J. F. and L. Shao; “Recent Advances in Nanoparticles Production by High Gravity Technology–From Fundamentals to Commercialization,” J. Chem. Eng. Japan, 40, 896 (2007)

Cheng, H. H. and C. S. Tan; “Reduction of CO2 Concentration in a Zinc/air Battery by Absorption in a Rotating Packed Bed,” J. Power Source, 162, 1431 (2006)

Cheng, H. H. and C. S. Tan; “Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed,” Energy. Procedia., 1, 925 (2009)

Chiang, C. Y., Y. S. Chen, M. S. Liang, F. Y. Lin, C. Y. Tai and H. S. Liu; “Absorption of Ethanol into Water and Glycerol/Water Solution in a Rotating Packed Bed,” J. Tai. Inst. Chem. Eng. 40. 418 (2009)

Fair, J. R., A. F. Seibert, M. Dehrens, P. P. Saraber and Z. Olujic; “Structured Packing Performance-Experimental Evaluation of Two Predictive Models,” Ind. Eng. Chem. Res., 39, 1788 (2000)

Guo, F., C. Zheng, K. Guo and N. C. Gardner; “Hydrodynamics and Mass Transfer in Crossflow Rotating Packed Bed,” Chem. Eng. Sci., 52, 3853 (1997)

Guo, K., F. Guo, Y. Feng, J. Chen, C. Zheng and N. N. Gardner; “Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-bed Contactor,” Chem. Eng. Sci., 55, 1699 (2000)

Jassim, M. S., G. Rochelle, D. Eimer and C. Ramshaw; “Carbon Dioxide Absorption and Desorption in Aqueous Mpnoethanolamine Solutions in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 46, 2823 (2007)

Ji, J. B., Y. M. Li, Y. L. Yu, Z. C. Xu and X. H. Li; “Hydrodynamic Behavior in a Rotating ZigZag Bed,” Chin. J. Chem. Eng., 18 (1), 34 (2010)

Jiao, W., Y. Liu and G. Qi, “A New Impinging Stream-Rotating Packed Bed Reactor For Improvement of Micromixing Iodide and Iodate,” Chem. Eng. J., 157, 168 (2010)

Kelleher, T. and J. R. Fair; “Distillation Studies in a High-gravity Contactor,” Ind. Eng. Chem. Res., 35, 4646 (1996)

Keyvani, M. and N. C. Gardner; “Operating Characteristics of Rotating Beds,” Chem. Eng. Prog., 85, 48 (1989)

Kumar, M. P. and D. P. Rao; “Studies on High-gravity Gas-liquid Contactor,” Ind. Eng. Chem. Res., 29, 917 (1990)

Lewis, W. K. and W. E. Whitman; “Principles of Gas Absorption,” Ind. Eng. Chem., 16, 1215 (1924)

Li, X. P., Y. Z. Liu, Z. Q. Li and X. L. Wang; “Continuous Distillation Experiment with Rotating Packed Bed” Chin. J. Chem. Eng., 16 (4), 656 (2008)

Li, X. P. and Y. Z. Liu; “Characteristics of Fin Baffle Packing Used in Rotating Packed Bed” Chin. J. Chem. Eng., 18 (1), 55 (2010)

Lin, C. C., T. J. Ho and W. T. Liu; “Distillation in a Rotating Packed Bed,” J. Ind. Eng. Japan., 35, 1298 (2002)

Lin, C. C., W. T. Liu and C. S. Tan; ” Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 42, 2381 (2003)

Lin, C. C., T. Y. Wei, W. T. Liu and K. P. Shen; “Removal of VOCs from Gaseous Streams in a High-Voidage Rotating Packed Bed,” J. Ind. Eng. Chem., 37, 1471 (2004)

Lin, C. C and W. T. Liu; “Removal of an Undesired Component from a Valuable Product Using a Rotating Packed Bed,” J. Ind. Eng. Chem., 12, 455 (2006)

Lin, C. C., G. S. Jian; ”Characteristics of a Rotating Packed Bed Equipped with Blade Packings,” Sep. Purif. Technol., 54, 51 (2007)

Lin, C. C. and B. C. Chen; “Characteristics of cross-flow rotating packed beds,” J. Ind. Eng. Chem., 14, 322 (2008a)

Lin, C. C. and K. S. Chien; “Mass-Transfer Performance of Rotating Packeds Beds Equipped with Blade Packings in VOCs Absorption into Water,” Sep. Purif. Technol., 63, 138 (2008b)

Liu, H. S., C. C. Lin, S. C. Wu and H. W. Hsu; “Characteristics of a Rotating Packed Bed,” Ind. Eng. Chem. Res., 35, 3590, (1996)

Linek, V., T. Moucha and F. J. Rejl; “Hydraulic and Mass Transfer Characteristics of Packings for Absorption and Distillation Columns. Rauchert-Metall-Sattel-Rings,” Chem. Eng. Res. Des., 79, 725 (2001)

Munjal, S., M. P. Dudukovic and P. Ramachandran; “Mass-transfer in Rotating Packed Beds-I. Development Of Gas-Liquid and Liquid-Solid Mass-Transfer Correlations,” Chem. Eng. Sci., 44, 2245 (1989a)

Munjal, S., M. P. Dudukovic and P. Ramachandran; “Mass-transfer in Rotating Packed Beds-II.Experimental Results and Comparison with Theory and Gravity Flow,” Chem. Eng. Sci., 44, 2257 (1989b)

Peel, J., C. R. Howarth and C. Ramshaw; “Process Intensification: Higee Seawater Deaeration,” Trans IChemE , Part A, 76, 585 (1998)

Ramshaw, C. and R. H. Mallinson; “Mass Transfer Process,” U.S. Patent 428,325, (1981)

Rao, D. P., A. Bhowal and P. S. Goswami; “Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal,” Ind. Eng. Chem. Res., 43, 1150 (2004)

Reddy, K. J., A. Gupta, O. P. Rama and D. P. Rao; “Process Intensification in a HIGEE with Split Packing,” Ind. Eng. Chem. Res., 45, 4270 (2006)

Sawistoski, H.; “Flooding Velocities in Packed Columns Operating at Reduced Pressure,” Chem. Eng. Sci., 6, 138 (1957)

Sexton, K. and Westberg, H“ Photochemical Ozone Formation from Petrolenum Refinery Emissions” Atmi Environ., 17, 467 (1983)

Singh, S. P., J. H. Wilson, R. M. Counce, J. F. Villiersfisher, H. L. Jennings, A. J. Lucero, G. D. Reed, R. A. Ashworth and M. G. Elliott; “Removal of Volatile Organic-Compounds from Groundwater using a Rotary Air Stripper,” Ind. Eng. Chem. Res., 31,574 (1992)

Tan, C. S. and J. E. Chen; ”Absorption of Carbon Dioxide with Piperazine and Its Mixtures in a Rotating Packed Bed,” Sep. Purif. Technol., 49, 174 (2006)

Tai, C. Y., C. T. Tai and H. S. Liu; “Synthesis of Submicron Barium Carbonate Using a High-gravity Technique,” Chem. Eng. Sci., 61, 7479 (2006)

Tai, C. Y., C. T. Tai, M. H. Chang and H. S. Liu; “Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor,” Ind. Eng. Chem. Res., 46, 5536 (2007)

Tai, C. Y., Y. H. Wang and H. S. Liu; “A Green Process for Preparing Silver Nanoparticles Using Spinning Disk Reactor,” AIChE J., 54, 445 (2008)

Tung, H. H. and R. S. H. Mah; “Modeling Liquid Mass-transfer in Higee Seperation Process,” Chem. Eng. Commun., 39, 147 (1985)

Wang, G. Q., O. G. Xu, Z. C. Xu and J. B. Ji; “New HIGEE-Rotating ZigZag Bed and Its Mass Transfer Performance,” Ind. Eng. Chem. Res., 47, 8840, (2008)

Wang, G. Q., Y. Q. Jiao, Z. C. Xu and J. B. Ji; “Studies on Performance of Crossflow Concentric-Ring Rotating Bed,” Ind. Eng. Chem. Res., 48, 10643 (2009)

Wang, M., H. K. Zou, L. Shao and J. F. Chen; “Controlling Factors and Mechanism of Preparing Needlelike CaCO3 Under High-gravity Environment,“ Power Technol., 142, 166 (2004)

Yang, H. J., G. W. Chu, Y. Xiang and J. F. Chen, “Characterization of Micromixing Efficiency in Rotating Packed Beds by Chemical Methods,” Chem. Eng. J., 121, 147 (2006)

Yang, K., G. W. Chu, L. Shao, Y. Luo and J. F. Chen, “Micromixing Efficiency of Rotating Packed Bed with Premixed Liquid Distributor,” Chem. Eng. J., 153, 222 (2009)

Zhao, H., L. Shao and J. F. Chen, “High-gravity process intensification technology and application,” Chem. Eng. J., 156, 588(2010)

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 單承剛、何明泉(2001)。設計經理人與跨領域設計團隊之傳達研究。設計學報第8卷第1期。
2. 單承剛、何明泉(2001)。設計經理人與跨領域設計團隊之傳達研究。設計學報第8卷第1期。
3. 單承剛、何明泉(2001)。設計經理人與跨領域設計團隊之傳達研究。設計學報第8卷第1期。
4. 單承剛、何明泉(2001)。設計經理人與跨領域設計團隊之傳達研究。設計學報第8卷第1期。
5. 莊修田(2000)。室內設計專業地位之建立問題探討。中原學報,28卷2期。
6. 莊修田(2000)。室內設計專業地位之建立問題探討。中原學報,28卷2期。
7. 莊修田(2000)。室內設計專業地位之建立問題探討。中原學報,28卷2期。
8. 莊修田(2000)。室內設計專業地位之建立問題探討。中原學報,28卷2期。
9. 張文智、姜寶美(1998)。台灣大型商業設計公司經營管理要領之研究。設計學報第3卷第2期。
10. 張文智、姜寶美(1998)。台灣大型商業設計公司經營管理要領之研究。設計學報第3卷第2期。
11. 張文智、江潤華(2009)。設計溝通模式與團隊創造力關係之探討。設計學報第14卷第2期。
12. 張文智、江潤華(2009)。設計溝通模式與團隊創造力關係之探討。設計學報第14卷第2期。
13. 張文智、江潤華(2009)。設計溝通模式與團隊創造力關係之探討。設計學報第14卷第2期。
14. 張文智、江潤華(2009)。設計溝通模式與團隊創造力關係之探討。設計學報第14卷第2期。
15. 張文智、江潤華(2008)。提升設計組織創造力做法之研究。設計學報第13卷第1期。