跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱繼樂
研究生(外文):Ji-Le Qiu
論文名稱:生化防護塗層製造條件之最佳化
論文名稱(外文):Optimization of Production Conditions of Biochemical Protective Coating Gel
指導教授:吳瑞璋
指導教授(外文):Jui-Chang Wu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:水蒸氣透濕量薄膜
外文關鍵詞:membranewater vapor permeability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用乾式相轉換法製備生化防護塗層,將混合的防護材料塗佈在含有PTFE膜的織物上,製備成能抵抗化學戰劑的防護布料,且具有良好的透濕能力及適當的塗佈密度。利用掃描式電子顯微鏡(SEM)觀察防護塗層樣品的塗佈情形,得知塗佈密度越厚,膜層越緻密。經由氣相層析儀(GC)與火焰光度偵測器(FPD)偵測訊號,測試防護塗層抵擋化學戰劑模擬劑的滲透量。最佳的實驗結果,當混合比例為AW:D=1:1的條件下,製備的水相防護塗層,塗佈密度為17.66 (g/m2),水氣透濕量可達到20,000(g/day/m2)以上,且戰劑模擬氣體滲透量為0.2 (μg/day/m2),表示此種防護材料具有阻擋毒氣的功能。

This research focused on dry-phase inversion method to prepare biochemical protective coating gel. A mixture of protective material was coated on fabric with PTFE film to obtain a great Water Vapor Permeability (WVP) and stable coating density. The coating result on protective coating gel was observed by the Scanning Electron Microscopy (SEM), which showed that thicker coating layer will result in higher density. This research studied the detection signal of the half mustard warfare agent using the Gas Chromatography (GC) equipped with a Flame Photometric Detector (FPD) in order to test permeation of chemical warfare agent of protective coating gel. In order to get the best result, the ratio of AW and D must stays in 1:1 to successfully produce protective coating gel. Which lead to 17.66 (g/m2) coating density and water vapor permeability went over 20,000 (g/day/m2), and permeation of agent simulated was 0.2(μg/day/cm2). This study has proved that the chemical warfare agent can be successfully blocked by this protective material.

總目錄
中文摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 生化武器與戰爭型態 1
1-2 化學戰劑種類 2
1-2-1 神經性毒劑 3
1-2-2 腐爛性毒劑 4
1-2-3 血液性毒劑 5
1-2-4 窒息性毒劑 6
1-2-5 刺激性毒劑 6
1-2-6 失能性毒劑 7
1-3 生化防護服發展現況 8
1-4 生化防護服之種類 8
1-4-1 透氣式防護服 8
1-4-2 非透氣式防護服 10
1-5 防護服撥水撥油處理 11
1-6 透濕性之測試法 14
1-7 薄膜製備方法 20
1-8 文獻回顧 21
1-9 研究目的 23
第二章 理論背景 24
2-1 氣相層析分析法 24
2-2 防護塗層之塗佈密度 30
2-3 透濕性測試原理 30
第三章 儀器與藥品 32
3-1 材料 32
3-2 實驗藥品 32
3-3 實驗儀器 33
3-4 防護塗層薄膜之製備 33
3-4-1 防護溶液配製 33
3-4-2 製備塗層程序 34
3-5 防護塗層布料塗佈密度測試 36
3-6 防護塗層布料水氣透濕量實驗 36
3-6-1 醋酸鉀透濕杯之製備 36
3-6-2水氣透濕量測試 38
3-6-3 醋酸鉀還原析出 39
3-7 防護塗層薄膜結構分析 39
3-8 防護塗層布料穿透測試 40
3-9 防護塗層布料飽和吸水量測試 40
3-10 未塗佈前空白布料的水氣透濕量分析 41
第四章 結果與討論 42
4-1 溶劑相防護塗層布料 42
4-1-1 溶劑相防護溶液之探討 42
4-1-2 溶劑相防護溶液混合比例對塗佈密度及水氣透濕量之影響 44
4-1-3 溶劑相防護溶液混合之最佳比例 46
4-2 水相防護塗層布料 46
4-2-1 水相防護溶液之最佳混合比例 46
4-2-2 水相防護溶液之塗佈密度與水氣透濕量 48
4-2-3 水相防護塗層布料穿透測試結果 49
4-3 電子掃描顯微鏡(SEM)分析塗層薄膜結構 53
4-4 PTFE膜對水氣透濕量之影響 55
4-5 防護塗層布料操作誤差實驗 56
4-6 防護塗層布料塗佈密度對飽和吸水量之影響 57
第五章 結論 59
第六章 參考文獻 60
第七章 附錄 65

圖目錄
圖1-1:撥水撥油流程 12
圖1-2:經過撥水撥油處理後的表面 13
圖1-3:ASTM E96 B法(正水杯法)及WB法(倒水杯法)裝置圖 15
圖1-4:JIS L1099 A法(氯化鈣乾燥劑法)裝置圖 17
圖1-5:JIS L1099 B法(醋酸鉀法)裝置圖 19
圖2-1:氣相層析儀流程圖 25
圖2-2:管柱內物種分離示意圖 27
圖2-3:透濕性之原理 31
圖3-1:製備防護塗層薄膜程序 35
圖3-2:醋酸鉀透濕杯 37
圖3-3:測量水氣透濕量實驗 39
圖4-1:溶劑相防護溶液在不同混合比例下外觀顏色 43
圖4-2:A、B溶液混合比例之溶解度臨界值 44
圖4-3:防護溶液混合比例(A/B)對塗佈密度(g/m2)之影響 45
圖4-4:防護溶液混合比例(A/B)對水氣透濕量(g/day/m2)之影響 45
圖4-5:水相防護溶液在不同混合比例下對溶液均勻性的影響 47
圖4-6:水相防護布料經水氣透濕實驗後表面情況 49
圖4-7:檢量線與樣品編號1的層析圖譜 50
圖4-8:依據表4-2畫出的半芥子氣定量分析圖表 51
圖4-9:樣品編號2的層析圖譜 52
圖4-10:樣品編號3的層析圖譜 52
圖4-11:水相防護塗層截面圖 54
圖4-12:不同塗佈密度對布料水氣增加量之影響 58

表目錄
表4-1:水相防護薄膜之塗佈密度與水氣透濕量實驗結果 48
表4-2:水相防護布料之半芥子氣滲透實驗結果 50
表4-3:氣相層析儀所偵測出標準品信號 51
表4-4:SEM分析的塗層樣品 53
表4-5:PTFE膜對水氣透濕量實驗之影響結果 55
表4-6:操作誤差實驗之數據 56
表4-7:1kg的防護塗層布料在吸水量達飽和狀態下的重量 58

(1)Pohanka, M., P. Skládal, and Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents: A review, Folia Microbiol (Praha), 54(4), 263-72 (2009).
(2)Whitehall, J. S., Plague in a time of war: an experience in South Vietnam, The Medical journal of Australia, 191(11-12), 671-3, (2009).
(3)Capps, L., S. H. Vermund, and C. Johnsen, Smallpox and biological warfare: the case for abandoning vaccination of military personnel, American journal of public health, 76(10), 1229-31, (1986).
(4)Maki, D. G., National preparedness for biological warfare and bioterrorism: smallpox and the ophthalmologist, Archives of ophthalmology, 121(5), 710-1, (2003).
(5)Caya, J. G., R. Agni, and J. E. Miller, Clostridium botulinum and the clinical laboratorian: A detailed review of botulism, including biological warfare ramifications of botulinum toxin, Archives of Pathology & Laboratory Medicine, 128(6), 653-662, (2004).
(6)Szinicz, L., History of chemical and biological warfare agents, Toxicology, 214, 167-181, (2005).
(7)Aken, J. V. and E. Hammond, Genetic engineering and biological weapons, EMBO Reports, 4, 57-60 (2003).
(8)Abu-Qare, A. W. and M. B. Abou-Donia, Sarin: health effects, metabolism, and methods of analysis, Food and Chemical Toxicology, 40(10), 1327-1333, (2002).
(9)Davies, H. G., R. J. Richter, M. Keifer, C. A. Broomfield, J. Sowalla, and C. E. Furlong, The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin, Nature Genetics, 14, 334-336 (1996).
(10)Emadi, S. N., A. Hosseini-khalilib, M. R. Soroush, S. M. Davoodi, and S. S. Aghamiri, Mustard gas scarring with specific pigmentary, trophic and vascular charactristics (case report, 16-year post-exposure), Ecotoxicology and Environmental Safety, 69, 574-576 (2008).
(11)Hanaoka, S., K. Nomura, and T. Wada, Determination of mustardand lewisite relatedcompounds in abandoned chemical weapons(Yellow shells)from sources in China and Japan, Journal of Chromatography A, 1101, 268-277 (2006).
(12)Prokop, Z., F. Oplustil, J. DeFrank, and J. Damborsky, Enzymes fight chemical weapons, Biotechnology Journal, 1, 1370-1380 (2006).
(13)Wyatt, J. P. and C. A. Allister, Occupational phosgene poisoning: a case report and review., J Accid Emerg Med, 12, 212-213 (1995).
(14)Glasby, G.P., Disposal of chemical weapons in the Baltic Sea, Science of The Total Environment, 206, 267-273 (1997).
(15)喬昭華、陳省三、翟敦敏,化學防護服材料趨勢分析,輔仁民生學誌,第十二卷,第一期,第27-38頁 (2006)。
(16)Chen, Y., N. Jiang, L. Sun, and I. Negulescu, Activated Carbon Nonwoven as Chemical Protective Materials, RJTA, 10, (2006).
(17)Hao, X., J. Zhang, and Y. Guo, Study of new protective clothing against SARS using semi-permeable PTFE/PU membrane, European Polymer Journal, 40, 673-678 (2004).
(18)鄧坤誠,步兵人員配賦之防護衣研析,陸軍步兵學術季刊,第204期,第14-21頁 (2002)。
(19)施承坤,簡易型化生防護服之材質研發,碩士論文,國防大學中正理工學院,桃園 (2006)。
(20)李家碩,化學毒物穿透量檢測方法之建立,碩士論文,中原大學,中壢 (2011)。
(21)http://www.rudolf.co.id/index.php?mod=content&act=read&id=18&menu_id=15&title=hydrophobic-future,(9/6/2011)。
(22)McCullough, E. A., M. Kwon, and H. Shim, A comparison of standard methods formeasuring water vapour permeability of fabrics, Measurement Science and Technology, 14, 1402-08 (2003).
(23)林里燕,織物透濕性量測標準介紹,紡織速報,第175期,第37-43頁 (2007)。
(24)謝秀伶、張雅芬、陳琬琳、林尚明、林毓瑋、黃茂全,透濕防水性紡織品差異之研究,亞東技術學院、紡織產業綜合研究所。
(25)Mulder, M., Basic principles of membrane technology, Kluwer Academic Pub., Boston (2003).
(26)Wu, K.H., P. Y. Yua, Y. J. Hsieh, C. C. Yang, and G. P. Wang, Preparation and characterization of silver-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological protective material, Polymer Degradation and Stability, 94, 2170-2177 (2009).
(27)Wu, K. H., P. Y. Yu, C. C. Yang, G. P. Wang, and C. M. Chao, Preparation and characterization of polyoxometalate-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological self-detoxifying material, Polymer Degradation and Stability, 94, 1411-1418 (2009).
(28)Ramaseshan, R., S. Sundarrajan, Y. Liu, R. S. Barhate, N. L. Lala, and S. Ramakrishna, Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants, Nanotechnology, 17, 2947-2953, (2006).
(29)Jung, K. H., L. Ji, B. Pourdeyhimi, and X. Zhang, Structure- property relationships of polymer-filled nonwoven membranes for chemical protection applications, Journal of Membrane Science, 361, 63-70 (2010).
(30)Jung, K. H., B. Pourdeyhimi, and X. Zhang, Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes, Journal of Membrane Science, 362, 137-142 (2010).
(31)Lu, X., V. Nguyen, X. Zeng, B. J. Elliott, and D. L. Gin, Selective rejection of a water-soluble nerve agent stimulant using a nanoporous lyotropic liquid crystal-butyl rubber vapor barrier material: Evidence for a molecular size-discrimination mechanism, Journal of Membrane Science, 318, 397-404 (2008).
(32)Cojocaru, B., S. Neatu, V. I. Paarvulescu, V. Somoghi, N. Petrea,
G. Epure, M. Alvaro, and H. Garcia, Synergism of Activated Carbon and Undoped and Nitrogen-doped TiO2 in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite, ChemSusChem, 2(5), 427-436 (2009).
(33)黃鈺雲,防身護體的第一層保障化學防護衣,消防與防災科技雜誌,第八期,第98-101頁 (2003)。
(34)李銘軒、李貴琪、張偉瑤、周勝賢,不同吸濕排汗織物舒適性之比較,華周紡織期刊,第十六卷,第一期,第23-37頁 (2009)。
(35)Wijmans, J. G. and R. W. Baker, The solution-diffusion model: a review, Journal of Membrane Science, 107, 1-21 (1995).
(36)王文廣、田雁晨、呂通建,塑料材料的選用(第2版),化學工業出版社,北京(2007)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top