跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾沛宏
研究生(外文):Pei-Hung Chung
論文名稱:聚甲基丙烯酸甲酯膜材表面超疏水化電漿改質技術之研究
論文名稱(外文):Investigations on Plasma Modification Processes in Forming Super-hydrophobic Surfaces on Poly(methyl methacrylate)
指導教授:魏大欽
指導教授(外文):Ta-Chin Wei
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:145
中文關鍵詞:四氟甲烷聚甲基丙烯酸甲酯電漿表面改質超疏水六氟化硫疏油兩步驟電漿表面改質
外文關鍵詞:CF4plasma modificationsuper-hydrophobicitytwo-step plasma treatmentPoly(methyl methacrylate)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:590
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究以常見之緻密高分子聚合物為基材,分別為等規聚丙烯(i-PP)、無規聚丙烯(a-PP)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚對苯二甲酸乙酯(PET),利用CF4電漿進行表面改質,探討膜材性質之不同對電漿改質膜材表面疏水及疏油性質的影響,而後針對聚甲基丙烯酸甲酯(PMMA)進行膜面超疏水化之電漿改質,探討電漿功率、改質時間、氣體流率、SF6電漿改質與兩步驟電漿改質對膜材表面疏水及疏油性質的影響。並且利用WCA、XPS、SEM、AFM等儀器分析表面化學組成與物理形態之變化,搭配電漿放射光譜儀(OES)分析電漿中物種濃度的變化。
首先使用CF4電漿對各種膜材進行表面改質,發現各膜材皆能在短時間內(1 min)快速氟化,但氟化程度與膜材之氫碳比有正比之關係,含氧量較高的膜材受到電漿蝕刻效應皆較明顯,而非結晶性膜材也較具結晶度之膜材易於蝕刻,在表面形態發現CF4電漿不易於含有苯環之堅硬結構膜材製造出粗糙度。
針對PMMA膜材進行CF4電漿表面改質,發現改質後膜面具有超疏水(~155°)及疏油(~140°)特性,接觸角遲滯現象與滑落角約為40°。電漿改質後膜面氟碳比約為1.1,膜材表面形態亦有明顯之變化,由SEM及AFM發現膜面具有兩種尺度的微結構粗糙度,進而使表面具有超疏水之特性。
在增加電漿功率及降低氣體流率都能提升膜面粗糙度,其中增加功率會加強離子轟擊的效果使表面粗糙度隨之提升,幫助膜面快速達超疏水化和提升自潔效果,而降低氣體流率會產生電漿聚合效應,表面在覆蓋一層氟碳膜後電漿主要為蝕刻效應,造成表面粗糙度提升,但膜面氟碳比較低、氧碳比較高,不利於降低表面能,造成膜面不易達到超疏水化之特性也不具有自潔效果。
將進料氣體由CF4改為SF6進行改質,發現PMMA膜面可在較短改質時間達到超疏水的特性,從SEM圖中發現表面有明顯的粗糙結構產生,說明SF6電漿提供更多氟自由基濃度並以蝕刻效應為主,但其高溫之電漿環境,使得膜材有嚴重的破壞,大幅降低透光度。
最後進行兩步驟之表面電漿改質,以氧氣電漿為第一步驟,發現可以增加後續經由CF4電漿處理後之表面粗糙度,提升疏水效果和自潔效應,在適當調配兩步驟之電漿功率和改質時間後得到維持光學性質和表面超疏水化之最佳製程參數。


In this study, surfaces of polymer sheets (e.g. i-PP, a-PP, PS, PMMA, PC, PET) were modified into hydrophobic and oleophobic by CF4 plasma treatment. These polymer sheets were fluorinated immediately (~1 min) and the degree of fluorination was related to polymer’s H/C ratio. It is also found the etch rate and surface roughness were affected by its chemical structure (e.g. oxygen content, phenyl ring, crystallinity) after CF4 plasma modification. Among the transparent polymers (PS, PMMA, PC, PET), the most effective surface modification was on PMMA sheet.
The PMMA surface’s water contact angle was greater than 150° and methylene iodide (CH2I2) contact angle was greater than 140° after CF4 plasma modification. Further, the water contact angle hysteresis (WCAH) and the sliding angle were both at 40°. The results also revealed that the surface roughness was significantly increased. At the same time the surface fluorination occurred rapidly by the plasma treatment. After operating plasma parameter optimization (power, gas flow rate, treatment time), we succeeded to fabricate super-hydrophobic PMMA sheet and maintained its good transmittance.
Two-step plasma treatment was also conducted on PMMA sheets. O2 plasma was better than Ar plasma for the first step, since it led the surface roughness to increase and also improved both the surface hydrophobicity and self-cleaning capability. We also fabricated super-hydrophobic PMMA and maintained its good transmittance after optimizing the process parameters of the two-step plasma treatment.


中文摘要 I
Abstract III
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 X
第一章 前言 1
1-1 研究源起 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 高分子聚合物基材分類與簡介 4
2-2 反應氣體(CF4、SF6)簡介 7
2-3 電漿簡介 8
2-3.1 電漿定義 8
2-3.2 電漿原理及基本反應 9
2-3.3 電漿表面改質技術 13
2-4 超疏水原理及研究近況 15
2-4.1 超疏水原理 15
2-4.2 粗糙表面之數學模型 16
2-4.3 超疏水研究近況 18
第三章 研究方法與儀器原理 23
3-1 研究目的 23
3-2 實驗步驟 25
3-2.1 膜材前處理 25
3-2.2 電漿反應系統 28
3-3 儀器原理 32
3-3.1 接觸角測量儀(CA) 32
3-3.2 掃描式電子顯微鏡(SEM) 7
3-3.3 X射線光電子能譜儀(XPS) 37
3-3.4 原子力顯微鏡(AFM) 38
3-3.5 傅立葉轉換紅外線光譜儀(FTIR) 39
3-3.6 紫外光-可見光光譜儀(UV-Vis) 7
3-3.7 電子天平(Weighing) 39
3-3.8 電漿放射光譜儀(OES) 40
第四章 結果與討論 43
4-1 CF4電漿改質泛用與工程塑膠膜材 43
4-1.1 電漿對不同膜材改質效果之影響 43
4-1.2 化學元素組成分析 47
4-1.3 表面形態之變化 51
4-1.4 表面能分析 59
4-2 CF4電漿改質聚甲基丙烯酸甲酯膜材 60
4-2.1 電漿功率對改質效果之影響 60
4-2.2 動態接觸角分析 63
4-2.3 化學元素組成分析 65
4-2.4 表面形態之變化 71
4-2.5 表面能分析 79
4-2.6 電漿放射光譜分析 80
4-3 調整電漿參數改質聚甲基丙烯酸甲酯膜材 84
4-3.1 電漿功率對改質之影響 84
4-3.2 氣體流率對改質之影響 93
4-3.3 CF4電漿改質最適化之參數調整 103
4-4 SF6電漿改質聚甲基丙烯酸甲酯膜材 104
4-4.1 SF6電漿改質效果 104
4-4.2 化學元素組成分析 106
4-4.3 表面形態之變化 107
4-5 兩步驟電漿改質聚甲基丙烯酸甲酯膜材 109
4-5.1 第一步驟不同氣體電漿改質聚甲基丙烯酸甲酯膜材 109
4-5.2 調整第一步驟之電漿參數對膜材改質之效果影響 113
4-5.3 調整第二步驟之電漿參數對膜材改質之效果影響 120
第五章 結論 124
參考文獻 127
自述 132

參考文獻
[1]賴耿陽編著, "聚丙烯樹脂PP原理與應用," 復漢出版社, 1999.
[2]古奕凡, "聚丙烯膜材表面超疏水化電漿改質技術及形成機制之研究," 私立中原大學碩士論文, 2009.
[3]松浦 一雄編著, 黃振球編譯, "圖解高分子材料最前線," 全華科技出版社, 2006.
[4]鄭為允, "以高溫微波電漿火矩轉化四氟甲烷與六氟化硫之研究," 私立中原大學碩士論文, 2007.
[5]楊士賢, "以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 私立中原大學碩士論文, 2005.
[6]劉志宏, "應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究," 私立中原大學博士論文, 2005.
[7]B. Chapman, "Glow Discharge Process," John Wiley & Sons, 1980.
[8]楊順文, "電漿聚合碳氮層-TPX複合膜應用於氧氣分離之研究," 私立中原大學碩士論文, 2002.
[9]尤聰展, "電漿改質技術應用於聚丙稀薄膜表面超疏水化之研究," 私立中原大學碩士論文, 2007.
[10]高正雄譯, "高分子材料的電漿表面處理."
[11]W. Barthlott and C. Neinhuis, "Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces," Annals of Botany, vol. 79, pp. 667-677, 1997.
[12]W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, pp. 1-8, 1997.
[13]B. Bhushan, Y.C. Jung, K. Koch, "Micro-, nano- and hierarchical structures for superhydrophobicity , self-cleaning and low adhesion," Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., vol. 367, pp. 1631–1672, 2009.
[14]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, pp. 988-994, 1936.
[15]A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc., vol. 40, pp. 546-551, 1944.
[16] A. J. Meuler, G. H. McKinley, and R. E. Cohen, "Exploiting
Topographical Texture To Impart Icephobicity," ACS Nano, vol. 4, pp. 7048-7052, 2010.
[17]J. D. Coninck, J. Ruiz, and S. Miracle-Sol, "Generalized Young's equation for rough and heterogeneous substrates: A microscopic proof," Physical Review E, vol. 65, p. 036139, 2002.
[18] K. Teshima, H Sugimura, Y. Inoue, O. Takai, and A. Takano, " Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating," Appl. Surf. Sci., vol. 244, pp. 619-622, 2005.
[19]R. D. Mundo, F. Palumbo, and R. d'Agostino, "Nanotexturing of Polystyrene Surface in Fluorocarbon Plasmas : From Sticky to Slippery Superhydrophobicity," Langmuir, vol. 24, pp. 5044-5051, 2008.
[20]R. D. Mundo, V. D. Benedictis, F. Palumbo, and R. d'Agostino, "Fluorocarbon plasmas for nanotexturing of polymers : A route to water-repellent antireflective surfaces," Appl. Surf. Sci., vol. 255, pp. 5461-5465, 2009.
[21]K. Tsougeni, N. Vourdas, A. Tserepi, and E. Gogolides, "Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surface : From Stable Super Hydrophilic to Super Hydrophobic Surfaces," Langmuir, vol. 25, pp. 11748-11759, 2009.
[22]S. H. Gao, K. S. Zhou, M. K. Lei, and L. S. Wen, "Comparative Study of the Superhydrophobic Modification of Silicone Rubber Surfaces by CF4 ICP and CCP," Plasma Process. Polym. , vol. 6, pp. 530-536, 2009.
[23]M. Manca, B. Cortese, I. Viola, A. S. Arico, R. Cingolani, and G. Gigli, "Influence of Chemistry and Topology Effects on Superhydrophobic CF4-Plasma-Treated Poly(dimethylsiloxane) (PDMS)," Langmuir, vol. 24, pp. 1833-1843, 2008.
[24]S. H. Kim, J. H. Kim, B. K. Kang, and H. S. Uhm, "Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4-H2," Langmuir, vol. 21, pp. 12213-12217, 2005.
[25]南亞塑膠股份有限公司, "http://www.npc.com.tw/index.htm."
[26] 高成電木塑膠有限公司, "http://www.kcm.com.tw/index.php"
[27]G. Lichao and T. J. McCarthy, "Contact Angle Hysteresis Explained," Langmuir, vol. 22, pp. 6234-6237, 2006.
[28]D. Quere, "Non-sticking drops," Rep. Prog. Phys., vol. 68, pp. 2495-2532, 2005.
[29]T. Young, "An Essay on the Cohesion of Fluids," Philos. Trans. R. Soc. London, pp. 65-87, 1805.
[30]John H. Clint and A. C. Wicks, "Adhesion under water: surface energy considerations," International Journal of Adhesion & Adhesives, vol. 21, pp. 267-273, 2001.
[31]何政恩、高振宏, "SEM/EDS的原理與操作應用之簡介," 化工技術, vol. 11, pp. 102-114
[32] 謝樹恩、吳泰伯, "X光繞射原理與材料結構分析," 1996.
[33] The NanoWizard® AFM handbook version 1.3," 2005.
[34] 柯以侃主編, "儀器分析," 新文京開發出版社, 2007.
[35]J. W. Coburn and M. J. Chen, "Optical Emission Spectroscopy of Reactive Plasmas : A method for Correlating Emission Intensities to Reactive Particle Density," J. appl. phys., vol. 51, pp. 3134, 1980.
[36]R. d'Agostino, "Plasma Deposition Treatment and Etching of Polymers," ACADEMIC PRESS, INC., 1990.
[37]J. P. Youngblood and T. J. McCarthy, "Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma," Macromolecules, vol. 32, pp. 6800-6806, 1999.
[38]D. Hegemann, "Plasma treatment of polymers for surface and adhesion improvement," Nucl. Instr.and Meth. In Phys. Res. B, pp. 281-286, 2003.
[39]R. C. Flgan and J. H. Seinfeld, " Fundamentals of Air Pollution Engineering," Prentice Hall, 1988.
[40]R. Y. Korotkov, "Fluorination of polymethylmethacrylate with SF6 and hexafluoropropylene using dielectric barrier discharge system at atmospheric pressure," Surf. Coat. Technol., pp. 7207-7215, 2007.
[41]E. Gogolides, "Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surfaces: From Stable Super Hydrophilic to Super Hydrophobic Surfaces," Langmuir, vol. 25, pp. 11748-11759, 2009.
[42]A. -K. Chu, "Formation of a high hydrophilic/hydrophobic contrast surface on PET substrates by ERC generated sulfur hexafluoride plasma," Appl. Surf. Sci., 2011.
[43]M. Strobel, S. Corn, C. S. Lyons, and G. A. Korba, "Surface Modification of Polypropylene with CF4,CF3H, CF3Cl, and CF3Br Plasmas," J Polym Sci Polym Chem Ed, vol. 23, pp. 1125-1135, 1985.
[44]J. Fresnais, J. P. Chapel, and F. Poncin-Epaillard, "Synthesis of transparent superhydrophobic polyethylene surfaces," Surface and Coatings Technology, vol. 200, pp. 5296-5305, 2006.
[45]E. Gogolides, M.-E. Vlachopoulou, and A. D. Tserepi, "Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces," Nanotechnology, vol. 17, pp. 3977-3983, 2006.
[46]M. Kaba, A. Essamri, A. Mas, F. Schue, G. A. George, F. Cardona, L. Rintoul, and B. J. Wood, "Fluorinated-plasma modification of polyetherimide films," Journal of Applied Polymer Science, vol. 100, pp. 3579-3588, 2006.
[47]L. Gao and T. J. McCarthy, "The "Lotus Effect" ; Explained : Two Reasons Why Two Length Scales of Topography Are Important," Langmuir, vol. 22, pp. 2966-2967, 2006.
[48] J. Chai, F. Lu, B. Li, and D. Y. Kwok, "Wettability Interpretation of Oxygen Plasma Modified Poly(methyl methacrylate),"Langmuir, vol. 20, pp. 10919-10927, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top