跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宇豪
研究生(外文):Yu-Hao Tsai
論文名稱:孔隙性二氧化矽顆粒製備與探討
論文名稱(外文):Preparation of porous silica particles
指導教授:許克瀛
指導教授(外文):Keh-Ying Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:109
中文關鍵詞:界面活性劑孔隙性二氧化矽粒種乳化聚合法
外文關鍵詞:porous silica particlessurfactantSeeded emulsion polymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
利用懸浮聚合法和粒種乳化聚合法製備孔隙性聚苯乙烯-二乙烯苯共聚合物作為後續製備孔隙性二氧化矽顆粒的模版,並改變稀釋劑的種類和添加量來觀察其孔隙性的變化。再添加入四乙基矽烷(Tetraethyl orthosiliate,TEOS)於模板中並行水解縮合反應,之後利用高溫鍛燒方式將模板去除而得到具有孔隙性的微米級二氧化矽顆粒。另外以溶膠凝膠法並添加離子型界面活性劑溴化十六烷基三甲酯(cetyltrimethylammonium bromide ,CTAB)與十二烷胺鹽酸鹽(Dodecylamine Hydrochloride ,DLHC)製備奈米級孔隙性二氧化矽顆粒,添加三乙醇胺(Triethanolamine, TEA)改質TEOS減緩其反應速率以減低二氧化矽顆粒間的團聚現象,並改變乙醇的添加量來減緩凝膠化時間以使顆粒間的分散度達到最大,在以改變離子型界面活性劑的添加量來觀測其孔隙度的變化。
使用的分析儀器包括SEM、BET等儀器,在SEM上,可觀察顆粒的粒徑大小和表面結構以及顆粒間的分散情形,從BET中,觀測顆粒的比表面積和孔洞大小以及孔隙體積。

The porous polystyrene - divinylbenzene copolymer particles were prepared by Suspension polymerization and Seeded emulsion polymerization. The porous polystyrene - divinylbenzene copolymer particles were as a templates for subsequent preparation of silica particles, and change the type and quantity of diluent to observe the porosity of the changes. Adds Tetraethyl orthosiliate in parallel of the template and hydrolysis condensation reaction. followed by calcination to remove the template and get a porous silica microspheres. The porous silica nanospheres were prepared by Sol-Gel and add-ionic surfactant cetyltrimethylammonium bromide and Dodecylamine Hydrochloride. Added the Triethanolamine to stabilize the hydrolysis-condensation process and to avoid agglomeration. Change the amount of ethanol to slow gel time.for dispersed silica particles. in order to change the ionic surfactants are added to observe the amount of change in its porosity.Change the amount of ionic surfactants to observe porosity
There are many instruments of analysis to be used, including SEM and BET. From the SEM results , the particles size and surface structure were observed. From the BET results, specific surface area、average pore diameter and average pore volume of particles were observed.

目錄
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
表目錄 Ⅷ
圖目錄 Ⅸ
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 前言 4
2-2 均一粒種之製備 4
2-2-1 分散聚合法 4
2-2-2 無乳化劑乳化聚合法 6
2-3 多孔隙聚苯乙烯顆粒合成 8
2-4 有機無機混成材料之製備 13
2-5 孔隙性二氧化矽顆粒之製備 16
第三章 實驗理論 24
3-1 分散聚合反應 24
3-2 無乳化劑乳化聚合反應 26
3-3 粒種乳化聚合反應 29
3-3-1 孔洞形成的機構 30
3-4 溶膠-凝膠法 35
3-4-1 溶膠-凝膠法反應機制 35
3-4-2 以溶膠-凝膠法製作功能性材料之優點 37
3-5 二氧化矽的結構與應用 39
3-5-1 二氧化矽的特性 39
3-5-2 奈米二氧化矽之應用 41
3-6 界面活性劑 46
3-6-1 界面活性劑之分類 46
第四章 實驗部份 48
4-1 實驗藥品 48
4-2 實驗儀器設備 50
4-3 實驗步驟 51
4-3-1 懸浮聚合法製備孔隙性聚苯乙烯-二乙烯苯顆粒 51
4-3-2 聚苯乙烯顆粒合成 51
4-3-3 粒種乳化聚合法 53
4-3-4 二氧化矽與聚苯乙烯之複合顆粒 53
4-3-5 利用界面活性劑合成孔隙性二氧化矽顆粒 54
4-3-6 掃描式電子顯微鏡 54
4-3-7 比表面積之測試 56
第五章 結果與討論 60
5-1 孔隙性聚苯乙烯顆粒合成 60
5-1-1 孔隙性二氧化矽顆粒合成 63
5-2 粒種乳化聚合法 69
5-2-1 分散聚合法合成聚苯乙烯顆粒 69
5-2-2 粒種乳化聚合法 71
5-2-3 不良溶劑稀釋劑環己烷的用量對PS-DVB共聚合顆粒的影
響 72
5-2-4 PS-DVB共聚合物與二氧化矽之複合顆粒 76
5-2-5 良溶劑稀釋劑甲苯的用量對PS-DVB共聚合顆粒的影響 79
5-2-6 無乳化劑乳化聚合法合成聚苯乙烯顆粒 84
5-2-7 粒種乳化聚合法 86
5-2-8 PS-DVB共聚合物與二氧化矽之複合顆粒 89
5-3 添加界面活性劑以製備孔隙性二氧化矽顆粒 90
5-3-1 改變界面活性劑的添加量對二氧化矽顆粒之影響 92
5-3-2 添加三乙醇胺以改善顆粒間團聚情形 96
5-3-3 改變乙醇的添加量以改善顆粒間團聚情形 98
5-3-4 添加兩種界面活性劑以製備孔隙性二氧化矽顆粒 102
第六章 結論 105
第七章 參考文獻 107

表目錄
Table 5-1 Polymerization recipes for monodisperse porouse poly(styrene-DVB) beads. 62
Table 5-2 Polymerization recipes for poly(styrene-DVB)/silica composite particle 68
Table 5-3 Recipes for Polystyrene (PS) by dispersion polymeriztion 70
Table 5-4 Caracteristics of PS-DVB particles 74
Table 5-5 Polymerization recipes for monodisperse porouse poly(styrene-DVB) beads.. 76
Table 5-6 Caracteristics of silica particles 79
Table 5-7 Caracteristics of silica particles 83
Table 5-8 Recipes for Polystyrene(PS) by emulsion-free polymeriztion. 86
Table 5-9 Caracteristics of Silica particles. 95
Table 5-10 Polymerization recipes for CTAB/silica composite particle. 95
Table 5-11 Polymerization recipes for CTAB/silica composite particle 98
Table 5-12 Caracteristics of Silica particles 98
Table 5-13 Polymerization recipes for CTAB/silica composite particle 100
Table 5-14 Caracteristics of Silica particles 101
Table 5-15 Polymerization recipes for CTAB/DLHC/silica composite particle 103
Table 5-16 Caracteristics of Silica particles 104
圖目錄
Fig. 2-1 Schematic diagram of experimental apparatus. 19
Fig. 2-2 Structure of Sar and Sar-H and schematic illustrating the formation of mesoporous hollow spheres with vesicular buds. APMS: 3-aminopropyltrimethoxysilane.. 22
Fig. 3-1 Mechanism of dispersion polycondensation. 26
Fig. 3-2 Phase-separation process of porous formation 31
Fig. 3-3 Mechanism of seed emulsion polymerization 34
Fig. 3 4 Mechanism of Sol-Gel route. 39
Fig. 3-5 Crystal name and Temperature range of silica 43
Fig. 3-6 Structure of silica 44
Fig. 3-7 Formation mechanism of silica 45
Fig. 3-8 Classification of Surfactant 47
Fig. 4-1 A principle of electron microscope.. 56
Fig. 4-2 Equipment of ASAP 2000.. 59
Fig. 5-1 Formation mechanism of porous Styrene-Divinyl Benzene copolymer particles. 61
Fig. 5-2 SEM photographs of surface morphology:(a) 5 ml n-hexane ,(b)7.5 ml n-hexane ,(c)10 ml n-hexane For other reaction conditions, see Table 1. 62
Fig. 5-3 SEM photographs of surface morphology:(a)0.5 ml TEOS ,(b)0.75 ml TEOS ,(c)1.0 ml TEOS ,(d)1.25 ml TEOS ,use sample 5-2(c) as a template before calcination For other reaction conditions ,see Table 2 64

Fig. 5-4 SEM photographs of surface morphology:(a)0.5 ml TEOS ,(b)0.75 ml TEOS ,(c)1.0 ml TEOS ,(d)1.25 ml TEOS ,use sample 5-1(c)as a template after calcination For other reaction conditions ,see Table 2 65
Fig.5-5 SEM photographs of surface morphology:(a)0.5 ml TEOS ,(b)0.75 ml TEOS ,(c)1.0 ml TEOS , use sample 5-2(a) as a template, For other reaction conditions ,see Table 2. 67
Fig. 5-6 SEM photographs of Polystyrene prepared by dispersion polymerization:(a) 2.3wt% AIBN Styrene (b) 3.3wt% AIBN Styrene (c) 5wt% AIBN Styrene (d) 6.7wt% AIBN Styrene,60℃.. 71
Fig. 5-7 SEM photographs of surface morphology:(a) 2 ml cyclohexane ,(b)4 ml cyclohexane ,(c)6 ml cyclohexane For other reaction conditions ,see Table 3 73
Fig. 5-8 SEM photographs of sample 5-5a (a)inner morphology, cyclohexane as inert diluents.For other reaction conditions, see Table 4. 75
Fig. 5-9 SEM photographs of surface morphology:(a) use sample 5-7 a for temples,(b) use sample 5-7 b for temples ,(c) use sample 5-7 c as a temples. For other reaction conditions see Table 4 78
Fig. 5-10 SEM photographs of surface morphology:(a) 2 ml toluene, (b)4 ml toluene , (c)6 ml toluene , For other reaction conditions see Table 4 81
Fig. 5-11 SEM photographs of sample 5-10(c) (a)inner morphology, toluene as diluents.For other reaction conditions see Table 4.. 82
Fig. 5-12 SEM photographs of Polystyrene prepared by emulsion-free polymerization:(a) 0.6wt% NaSS (b) 0.5wt% NaSS (c) 0.4wt% NaSS (d) 0.3wt%NaSS (e) 0.15wt%NaSS,70℃.. 85
Fig. 5-13 SEM photographs of surface morphology:(a) 2 ml cyclohexane ,(b)1 ml cyclohexane ,(c)(d)0.5 ml cyclohexane, (e)(f)0.25 ml cyclohexane , For other reaction conditions see Table 4. 88
Fig. 5-14 SEM photographs of surface morphology:(a) before calcinations;(b) after calcinations ,For other reaction conditions see Table 6 89
Fig. 5-15 Conceptual illustrations of porous silica spheres synthesized with TEOS and CTAB.solid lines represent pores inside the spheres.. 91
Fig. 5-16 SEM photographs of surface morphology:(a) ,(b)with CTAB ;(c),(d)no CTAB. For other reaction conditions, see Table 9. 92
Fig. 5-17 SEM photographs of surface morphology with different CTAB:(a)2.0 g, (b)1.5 g, (c)1.0 g, (d)0.5 g. For other reaction conditions, see Table 9 93
Fig. 5-18 SEM photographs of surface morphology:(a) ,(b)with 2g CTAB ;(c),(d)with 1 g CTAB,For other reaction conditions see Table 11 97
Fig. 5-19 SEM photographs of surface morphology:(a)25 ml EtOH, (b)10 ml EtOH, (c)0 ml EtOH .For other reaction conditions ,see Table 12 100
Fig. 5-20 SEM photographs of surface morphology: (a)1 g CTAB and 1 g DLHC ,(b)1.5g CTAB and 0.5 g DLHC. For other reaction conditions ,see Table 15. 102


1.K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209(1985)
2.C. K. Ober, K. P. Lok, and, M. L. Hair, J. Polym.Sci.:Polym. Lett. Ed., 23, 103(1985)
3.C. M. Tesng, Y. Y. Lu, M. S. El-Aasser, and H.W.Vanderhoff, J. Polym. Sci. Part A: Polym. Chem. Ed., 24, 2995-3007(1986)
4.S. Kobayashi, H. Uyama, S. W. Lee, Y.Matsumoto, J. Polym. Sci.: Polym. Chem., 31, 3133(1993)
5.Jin-Woong Kim a, Chung-Hyuk Lee b, Jung-Bae Jun b, Kyung-Do Suh b, Colloids and Surfaces A: Physicochemical and Engineering Aspects. ,194,57-64(2001)
6.Jinxia Huang, Hongtao Zhang, Junli Hou, Pingping , Reactive & Functional Polymers, 53, 1-9(2002)
7.Y. Ohtsuka, H. Kawakuchi, and Y. Sugi, J. Apple. Polym. Sci. 26,1637,(1981)
8.M. Okubo, A. Yamada, S. Shibao, K. Nakamae, and T. Mastsumoto, J. Appl. Polym. Sci. 26, 1675, (1981)
9.S. A. Chen, H. S. Chang, J. Polym. Sci. Polym. Chem.Ed., 23, 2615, (1985)
10.F. Hoshino, T. Fujimoto, H. Kawaguchi, and Y. Ohtsuka, Polym. J. 19, 241, (1987)
11.F. Hoshino, H. Kawaguchi, and Y. Ohtsuka, Polym. J. 19, 1157, (1987)
12.M. Okubo, Y. Katayama and Y. Yamamoto, ColloidPolym. Sci., 269, No. 3, 217,(1991)
13.R. Arshady, J. Microencapsulation, 5, No. 2, 101(1992)
14.Q. C. Wang, K. Hosoya, F. Svec and J. M Frechet. J., Anal. Chem., 64, 1232-1238 (1992 a)
15.Q. C. Wang, K. Hosoya and J. M. Frechet. J., Polym. Bulletin, 28, 569-576 (1992 )
16.C. M. Cheng, F. J. Micale, J. W. Vanderhoff. and M. S. EL-Aasser, J. Polym. Sci. : Part A, 30, 235-244 (1992)
17.K. Hosoya and J. M. J. Frechet, J. Polym. Sci. : Part A, 31, 2129-2141 (1993)
18.H. Uyama and S. Kobayashi, Polym. Intl., 34, 339-344 (1994)
19.M. Walenius,L.I.Kulin, and P.Flodin.,Reactive polymer,17,309-323(1992)
20.V. Smigol and F. Svec.,J, App. Polym. Sci., Vol.48, 2033-2039(1992)
21.D. Rabelo, and F. M. B. Coutinho, Polymer Bulletin, 31, 585-592(1993)
22.Q. C. Wang, F. Svece, and J. M. J. Frechet, J.Polym. Sci.: Part A: Polym. Chem., Vol.32,2169-2175(1994)
23.J. B. Nam, J. H. Ryu, J. W. Kim, I. S. Chang and K. D. Suh, Polymer, Vol. 46, 8956-8963(2005)
24.C. J. T. Landry, B. K. Coltrain and B. K. Brady, Polymer, 33 (1992)1486
25.Y.Wei, D. Yang, L. Tang and M. K. Hutchins, J. Mater. Res., 8, 1143(1993)
26.R. Tamaki and Y. Chujo, Chem. Mater., 11 (1999) 1719
27.R. Tamaki, K. Naka, and Y. Chujo, Polymer Bulletin, 39 (1997) 303
28.R. Tamaki, K. Naka, and Y. Chujo, Polymer Journal, 30 (1998) 60
29.Dominicus H. W. Hubert, Martin Jung, Peter M. Frederik, Paul H. H. Bomans, Jan Meuldijk, and Anton L. German., Adv. Mater. 2000, 12, No. 17, September 1
30.Baojian Zhang, Sean A. Davis, Neil H. Mendelson and Stephen Mann., Chem. Commun., 2000, 781–782
31.Ferry Iskandar, Mikrajuddin, and Kikuo Okuyama., Nano Lett., Vol. 1, No. 5, 2001
32.Daibin Kuang, Torsten Brezesinski, and Bernd Smarsly., J. AM. CHEM. SOC. 9 VOL. 126, NO. 34, 2004 10535
33.J. Widoniak, S. Eiden-Assmann and G. Maret, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 270-271, 329-334(2005)
34.Yi-Qi Yeh, Bi-Chang Chen, Hong-Ping Lin, and Chih-Yuan Tang., Langmuir 2006, 22, 6-9
35.Jingui Wang, Qiang Xiao, Huijing Zhou, Pingchuan Sun, Zhongyong Yuan, Baohui Li, Datong Ding, An-Chang Shi, and Tiehong Chen., Adv. Mater. 2006, 18, 3284–3288
36.Shailendra B. Rathod and Timothy L. Ward., J. Mater. Chem., 2007, 17, 2329–2335
37.Karin Möller, Johannes Kobler, and Thomas Bein., Adv. Funct. Mater. 2007, 17, 605–612
38.周更生, 陳貞志, 〝Sol-Gel 方法製備單一分佈二氧化矽粒子-溶劑效應.〞, 化工年會, (2003)
39.高分子工業, 〝合成二氧化矽的特性與用途.〞, 高分子工業 78,72 (1998)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文