(3.235.11.178) 您好!臺灣時間:2021/03/05 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊傑
研究生(外文):Jun-Jie Chen
論文名稱:電動心臟按摩器研發
論文名稱(外文):Design and implementation of an electrical based CPR system
指導教授:婁世亮
指導教授(外文):Shyh-Liang Lou
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:99
語文別:中文
論文頁數:92
中文關鍵詞:心肺復甦術電動心臟按摩器
外文關鍵詞:automatic compressioncardiopulmonary resuscitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:461
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心肺復甦術(CPR)是一項長時間的急救過程,易造成施救者手臂疲勞,導致胸部按壓力、深度與速率不足,使得病患心輸出量不足;此外,在運送病患之過程中,施救者被迫中斷急救,在沒有CPR的情況下將影響冠狀動脈與腦部血液灌流,降低急救的成功率。本研究發展電動式心臟按摩器取代徒手CPR,並結合生理資訊的即時量測與影像獲取,透過網絡可讓醫院端即時掌握急救現況。吾人研發之系統包含心臟按壓子系統、訊號擷取子系統與顯示介面子系統三部分,心臟按壓子系統能自動偵測胸口位置和自動胸部按壓;訊號擷取子系統中,結合雙電極式心電圖、光脈動體積描述圖和荷重元感測模組,以量測生理訊號與心臟按壓訊號;所擷取之生理資訊皆於顯示介面平台進行訊號分析、繪圖及記錄,系統運作同時以網路攝影機捕獲影像並連線至遠端完成即時視訊監測。總結,本系統之雛型是以假人安妮驗證,本系統能提供330牛頓之按壓力,按壓深度為4.9公分與每分鐘105下之按壓頻率,其特性符合2010年美國心臟協會所提出急救準則之規範。本研究已完成電動式心臟按摩器系統之雛型,日後可應用於遠距醫療急救,並降低醫療資源消耗與減緩重症醫療的壓力,提升急救品質。


Cardiopulmonary resuscitation (CPR) is a continuous emergency procedure that easily results in rescuer fatigue, which may lead to less effective compressions and therefore less cardiac output. Furthermore, CPR applied to the victim is usually inadvertently interrupted during transport. Without continuous CPR, coronary and brain perfusion will be greatly decreased and thus the chance of successful resuscitation will similarly diminish. This study aims to develop a smart CPR system powered by electricity in order to replace manual CPR. By combining real-time physiological measurements and video streaming, the hospital can control the dynamic application of CPR through Internet access. This system is comprised of three components: the cardiac compression sub-system, the signal acquisition sub-system and the display interface sub-system. The cardiac compression sub-system is able to detect the position of the chest and compress the chest automatically. The signal acquisition component combines the two-electrode electrocardiogram system, the photoplethysmography and the load cell module to measure physiological signals and chest compression signals. All the signals are analyzed then plotted at the display interface sub-system so vital signs can be adequately monitored. Simultaneously, live recording functionality via webcam allows video transmission to relevant third parties. Using CPR Annie, the system performed at a working rate of 105 compressions per minute with an average depth of 49 mm and a force of 330 Newtons, meeting “2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care”. This study accomplished the creation of a prototype smart electrical CPR system. It not only is applicable to telemedicine but will also reduce medical expenditure and improve quality first-aid in the near future.


IV
目錄
摘要 ..................................................................................................... I
Abstract ............................................................................................. II
謝誌 ................................................................................................... III
目錄 .................................................................................................. IV
圖目錄 ............................................................................................. VII
表目錄 .............................................................................................. XI
第一章 緒論 ...................................................................................... 1
1-1 研究背景 ............................................................................. 1
1-2 文獻回顧 ............................................................................. 2
1-2-1 心臟按摩器之發展 .................................................. 2
1-2-2 按壓之傷害 .............................................................. 4
1-2-3 心肺復甦術之輔助性治療 ...................................... 4
1-2-4 胸部按壓之重要性 .................................................. 5
1-3 研究動機與目的 ................................................................. 5
1-4 論文架構 ............................................................................. 6
第二章 理論基礎 .............................................................................. 8
2-1 心臟構造與血流運行 ......................................................... 8
2-2 心臟的電氣傳導系統 ......................................................... 9
2-3 心室顫動 ........................................................................... 10
2-4 心肺復甦術 ....................................................................... 10
2-5 心電圖 ............................................................................... 11
2-5-1 心電圖之基本波形 ................................................ 12
2-5-2 心電圖之標準肢導 ................................................ 12
V
2-5-3 心電圖之量測系統的電氣雜訊干擾 ................... 13
2-6 血氧濃度 ........................................................................... 14
2-7 SmartMotor伺服馬達 ....................................................... 15
2-7-1 比例積分微分控制 ................................................ 16
2-7-2 步階響應 ................................................................ 16
第三章 材料與方法 ........................................................................ 18
3-1 研究架構 ........................................................................... 18
3-2 軟體及工具 ....................................................................... 19
3-3 心臟按壓子系統設計 ....................................................... 19
3-3-1 機構設計 ................................................................ 20
3-3-2 電源模組 ................................................................ 22
3-3-3 伺服馬達系統 ........................................................ 24
3-3-4 心臟按壓子系統整合 ............................................ 26
3-4 訊號擷取子系統設計 ....................................................... 29
3-4-1 ECG模組之製作 .................................................... 29
3-4-2 PPG模組之製作 .................................................... 36
3-4-3 Load cell模組之製作 ............................................. 36
3-4-4 韌體模組之製作 .................................................... 37
3-5 顯示介陎子系統設計 ....................................................... 40
3-5-1 訊號處理介陎設計 ................................................ 40
3-5-2 即時視訊介陎設計 ................................................ 41
第四章 結果與討論 ........................................................................ 43
4-1 心臟按壓子系統驗證 ....................................................... 43
4-1-1 機構製作與改良探討 ............................................ 43
4-1-2 電容電流效應之探討 ............................................ 46
VI
4-1-3 鋰鈷電池消耗功率評估 ........................................ 46
4-1-4 步階響應圖 ............................................................ 48
4-1-5 馬達旋轉與螺桿行程相關性之結果 ................... 49
4-1-6 按壓深度與按壓力探討 ........................................ 50
4-2 訊號擷取子系統驗證 ....................................................... 53
4-2-1 ECG模組之驗證與探討 ........................................ 53
4-2-2 PPG模組之驗證與探討 ........................................ 56
4-2-3 Load cell模組之驗證 ............................................. 58
4-3 顯示介陎子系統呈現 ....................................................... 60
4-3-1 訊號處理介陎 ........................................................ 60
4-3-2 視訊之人機介陎 .................................................... 61
第五章 結論與未來工作 ................................................................ 64
5-1 結論 ................................................................................... 64
5-2 未來展望 ........................................................................... 65
5-2-1 心臟按壓子系統之改良 ........................................ 65
5-2-2 訊號擷取子系統之改良 ........................................ 66
5-2-3 顯示介陎子系統呈現驗證 .................................... 66
參考文獻........................................................................................... 67
附錄A 實驗材料 ............................................................................. 71
附錄B 文獻參考圖表 ..................................................................... 72
附錄C 運算放大器規格表 ............................................................. 81
VII
圖目錄
圖 3-1 研究架構圖 ................................................................................. 19
圖 3-2 電動心臟按摩器子系統架構圖 ................................................. 20
圖 3-3 電源模組系統示意圖 ................................................................. 22
圖 3-4 電源模組系統方塊圖 ................................................................. 23
圖 3-5 鋰鈷電池消耗評估實驗架構 ..................................................... 24
圖 3-6 伺服馬達之系統校驗實驗架構圖 ............................................. 24
圖 3-7 SmartMotor伺服馬達之步階響應,左圖未經PID演算法,右圖經PID演算法達到理想步階響應。 ........................................... 25
圖 3-8 馬達旋轉與螺桿行程實驗設計 ................................................. 26
圖 3-9 心臟按壓之系統整合架構圖 ..................................................... 27
圖 3-10 圖(a)為伺服馬達胸部按壓流程,圖(b)為按鈕實照圖。 ...... 28
圖 3-11 假體實驗設計 ........................................................................... 28
圖 3-12 訊號擷取子系統架構圖 ........................................................... 29
圖 3-13 雙電極式ECG系統之方塊圖 ................................................. 30
圖 3-14 雙電極系統之電路拓樸 ........................................................... 31
圖 3-15 雙極式心電圖之等效電路圖 ................................................... 33
圖 3-16高通濾波器電路圖 .................................................................... 34
圖 3-17 二階Multiple Feedback Filter電路架構 ................................. 35
圖 3-18 光體積描述圖製作之方塊圖 ................................................... 36
圖 3-19 load cell 模組方塊圖 ................................................................ 37
圖 3-20 韌體模組架構 ........................................................................... 38
圖 3-21 韌體模組架構流程圖 ............................................................... 38
圖 3-22 封包格式 ................................................................................... 39
VIII
圖 3-23 命令通訊碼 ............................................................................... 39
圖 3-24 冗餘校驗演算法示意圖,其中^符號為互斥。 ..................... 40
圖 3-25 訊號處理介陎子系統之架構 ................................................... 41
圖 4-1 第一代心臟按壓子系統內部按壓空間示意圖,其中a為心臟按壓子系統最大高度、b為拉伸至最大寬度,1.夾持裝置、2.伸縮裝置、3.擔板裝置、4.固定裝置。 ................................................. 45
圖 4-2 第二代心臟按壓子系統內部按壓空間示意圖,其中a為心臟按壓子系統最大高度、b為拉伸至最大寬度,1.夾持裝置、2.伸縮裝置、3.擔板裝置、4.固定裝置。 ................................................. 45
圖 4-3圖(a)為電路開關瞬間產生高頻雜訊;圖(b)為使用低通濾波消除高頻雜訊之理想狀態。 ............................................................... 46
圖 4-4 鋰鈷電池使用時間評估 ............................................................. 47
圖 4-5 圖(a)為未經PID控制之頻率響應圖。圖(b)為伺服馬達經PID控制達到理想步階響應。 ............................................................... 48
圖 4-6 馬達旋轉與螺桿行程之校正曲線,橫軸為馬達旋轉圈數,縱軸為引動器之伸長量。 ................................................................... 49
圖 4-7步階響應測詴(安妮組:胸部厚度為17公分),按壓深度為49.5 mm、按壓力為332 N。 .................................................................. 51
圖 4-8步階響應測詴(安妮組:胸部厚度為19公分),按壓深度為49.25 mm、按壓力為339 N。 .................................................................. 51
圖 4-9步階響應測詴(海綿組: 胸部厚度為17公分),按壓深度為49.25 mm、按壓力為333 N。 ........................................................ 52
圖4-10步階響應測詴(海綿組: 胸部厚度為19公分),按壓深度為48.5 mm、按壓力為332 N。 .................................................................. 52
圖 4-11 雙極式心電圖之頻寬增益與頻率響應圖 ............................... 55
IX
圖 4-12 雙極式心電圖波形 ................................................................... 55
圖 4-13 光脈動圖之頻寬增益與頻率響應圖 ....................................... 57
圖 4-14 光脈動體積描述圖波形 ........................................................... 57
圖 4-15 荷重元模組之頻寬增益與頻率響應圖 ................................... 59
圖 4-16 荷重元波形 ............................................................................... 59
圖 4-17 荷重元之校正曲線 ................................................................... 59
圖 4-18 訊號處理介陎包含(a)UI控制區塊和(b)數據呈現窗。 ........ 61
圖 4-19 視訊捕獲介陎,其中a.為UI控制區塊。 ............................. 62
圖 4-20 用戶端即時視訊介陎,其中a.請求連結、b.傳送影像和c.IP位址。 ............................................................................................... 63
圖 4-21 伺服端即時視訊介陎,其中a.為等待連線、b.為未連線或已連線。 ............................................................................................... 63
圖 5-1 命令通訊碼 ................................................................................. 66
圖 B-1 心臟之電氣傳導系統[19] .......................................................... 72
圖 B-2 心電圖的基本波形產生機制[20] .............................................. 72
圖 B-3 Eindhoven’s triangle與肢導I、II、III之關係[21] .................. 73
圖 B-4 (A) Goldberger之電路 (B) Goldberger加強單極導程之影像空間向量位置圖[21] ............................................................................. 73
圖 B-5 胸肢導: V1、V2、V3、V4、V5、V6[21] .............................. 74
圖 B-6 電極與皮膚之間的等效電路模型[22] ...................................... 74
圖 B-7 motion artifacts[23]...................................................................... 75
圖 B-8 Baseline Drift with Respiration[24] ............................................ 75
圖 B-9 ECG corrupted with electromyographic noise[21] ...................... 75
圖 B-10 ECG corrupted with 60 Hz powerline interface[21] ................. 75
圖 B-11 (a)導線與人體形成迴路易受外界磁場干擾[26] (b)將導線交
X
錯可減少迴路陎積降低磁場干擾[26]............................................. 76
圖 B-12 感應電場干擾之模型[26],其中Z1、Z2為電極阻抗、Zg為對地阻抗、C1、C2為導程對身體產生之電容效應、C3為周遭環境來源對身體產生之電容效應而Id1、Id2、Id1+Id2為交流訊號。 ....... 76
圖 B-13光強度變化簡易模型[28] ......................................................... 77
圖 B-14 HbO2與Hb對光譜的吸收係數變化圖。 ............................... 77
圖 B-15 光體積描述圖直流與交流成分示意圖[29]............................ 78
圖 B-16 伺服馬達基本構造[30] ............................................................ 78
圖 B-17步階響應圖[31] ......................................................................... 79
圖 B-18 不穩定系統[30] ........................................................................ 79
圖 B-19 過阻尼系統[30] ........................................................................ 79
圖 B-20 次臨界阻尼系統[30] ................................................................ 80
圖 B-21 臨界阻尼系統[30] .................................................................... 80
圖 B-22 震盪系統[30] ............................................................................ 80
XI
表目錄
表 3-1 巴特沃斯頻率響應係數 ........................................................... 35
表 4-1 雙極式心電圖之響應特性 ....................................................... 54
表 4-2 光體積描述圖之響應特性 ....................................................... 56
表 4-3 荷重元模組之響應特性 ........................................................... 58
[1]W. B. Kouwenhoven, et al., "Closed-chest cardiac massage," JAMA: the journal of the American Medical Association, vol. 173, p. 1064, 1960.
[2]P. Plaisance, et al., "A comparison of standard cardiopulmonary resuscitation and active compression¡Vdecompression resuscitation for out-of-hospital cardiac arrest," New England Journal of Medicine, vol. 341, pp. 569-575, 1999.
[3]Todd. J. Cohen, et al., "A comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital," New England Journal of Medicine, vol. 329, pp. 1918-1921, 1993.
[4]吳宗憲, "應用形態學與動作分析於ACD-CPR裝置研究," 碩士, 工業設計學系, 國立成功大學, 台南市, 2001.
[5]S. Steen, et al., "Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation," Resuscitation, vol. 55, pp. 285-299, 2002.
[6]S. Steen, et al., "Treatment of out-of-hospital cardiac arrest with LUCAS, a new device for automatic mechanical compression and active decompression resuscitation," Resuscitation, vol. 67, pp. 25-30, 2005.
[7]M. Risom, et al., "Resuscitation, prolonged cardiac arrest, and an automated chest compression device," The Journal of emergency medicine, vol. 38, pp. 481-483, 2010.
[8]J. M. Field, et al., "Part 1: executive summary: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care," Circulation, vol. 122, p. S640, 2010.
[9]D. Smekal, et al., "No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS (TM) device--A pilot study," Resuscitation, vol. 80, pp. 1104-1107, 2009.
[10]Y. Li, et al., "The optimal phasic relationship between synchronized shock and mechanical chest compressions," Resuscitation, vol. 81, pp. 724-729, 2010.
[11]J. Kramer-Johansen, et al., "Mechanical chest compressions with trapezoidal waveform improve haemodynamics during cardiac arrest," Resuscitation, vol. 82, pp. 213-218, 2011.
[12]L. A. Cobb, et al., "Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation," JAMA: the journal of the American Medical Association, vol. 281, p. 1182, 1999.
[13]Y. Sato, et al., "Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation," Critical care medicine, vol. 25, p. 733, 1997.
[14]K. B. Kern, "Coronary perfusion pressure during cardiopulmonary resuscitation," Best Practice & Research Clinical Anaesthesiology, vol. 14, pp. 591-609, 2000.
[15]P. I. Aaronson, et al., The cardiovascular system at a glance vol. 2: Wiley-Blackwell, 2004.
[16]伊東春樹, 徹底圖解心律不整與心臟病: 楓書坊文化出版社, 2009.
[17]陳志中、張朝煜, 高級心臟救命術-重點指引&精要解說. 台灣: 華杏出版股份有限公司, 2009.
[18]B. Schoolfield, "Hightlights of the 2010 American Heart Association Guidelines for CPR and ECC," R. Mary Fran Hazinski, MSN, Ed., ed Dallas, 2010.
[19]許耕僑、朱學彥、唐浩偉、簡聖軒, 圖解心血管系統. 台北: 合記圖書出版社, 2009.
[20]I. Khalil and F. Sufi, "Real-time ECG data transmission with Wavelet Packet Decomposition over wireless networks," pp. 267-272.
[21]J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields: Oxford University Press, USA, 1995.
[22]Y. Liu and M. G. Pecht, "Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering," 2006, pp. 6045-6048.
[23]Y. Kishimoto, et al., "Detecting motion artifact ECG noise during sleeping by means of a tri-axis accelerometer," 2007, pp. 2669-2672.
[24]K. M. Chang, "Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition," Sensors, vol. 10, pp. 6063-6080, 2010.
[25]G. M. Friesen, et al., "A comparison of the noise sensitivity of nine QRS detection algorithms," Biomedical Engineering, IEEE Transactions on, vol. 37, pp. 85-98, 1990.
[26]蘇仁昌, "輕便型無線心電圖的研製," 2002.
[27]J. Mitschele, "Beer-Lambert Law," Journal of Chemical Education, vol. 73, p. 260, 1996.
[28]J. G. Webster, Design of pulse oximeters: Taylor & Francis, 1997.
[29]N. L. Pendleton, "Michael Fecteau," WORCESTER POLYTECHNIC INSTITUTE, 2008.
[30]Smart Motor基本構造: http://www.montrol.com.tw/WEB/smatrMotor.htm
[31]運動控制PID入門: http://digital.ni.com/public.nsf/allkb/6C861751839981A286256D14001C1AAB
[32]E. Richard and A. D. C. Chan, "Design of a gel-less two-electrode ECG monitor," 2010, pp. 92-96.
[33]O. T. Inan and G. T. A. Kovacs, "An 11 µW, two-electrode transimpedance biosignal amplifier with active current feedback stabilization," Biomedical Circuits and Systems, IEEE Transactions on, vol. 4, pp. 93-100, 2010.
[34]Multiple Feedback Filter電路架構: http://www.k7mem.150m.com/Electronic_Notebook/filters/act_lpfil.html

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔