|
[1] http://www.nanogallery.eu/nanolectures/49-richard-feynman-introduction- to-nanotechnology.html [2] http://nobelprize.org/nobel_prizes/physics/laureates/1986/press.html [3] Giessibl, F.J. Advances in atomic force microscopy. Reviews of Modern Physics 75, 949-983 (2003). [4] Binnig,G. et al. Atomic force microscope probes start multitasking. Materials Today 11, 47-47 (2008). [5] Shaw III, C.F. Gold-based therapeutic agents. Chemical reviews 99, 2589–2600 (1999). [6] Yamamuro, S. et al. Cr cluster deposition by plasma – gas- condensation method. Supramolecular Science 5, 239-245 (1998). [7] Mafuné, F. et al. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. The Journal of Physical Chemistry B 105, 5114-5120 (2001). [8] Morales, a M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 279, 208-211 (1998). [9] Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. The journal of physical chemistry. B 110, 15700-7 (2006). [10] Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature (London), Phys. Sci. 241, 20-22 (1973). [11] Tsai, C. Shrinking gold nanoparticles: dramatic effect of a cryogenic process on tannic acid/sodium citrate-generated gold nanoparticles. Materials Letters 58, 2023-2026 (2004). [12] Philip, D. Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 71, 80-5 (2008). [13] Scarpettini, A.F. et al. Coverage and Aggregation of Gold Nanoparticles on Silanized Glasses. Langmuir 26, 15948-15953 (2010). [14] Khatri, O.P. et al. Structural organization of gold nanoparticles onto the ITO surface and its optical properties as a function of ensemble size. Langmuir 24, 3787-93 (2008). [15] http://www.bic.com/products/particle_sizing/p_PS_90Plus.html [16] He, F. et al. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Analytical biochemistry 399, 141-3 (2010). [17] Works, W. et al. Implications of the failure of the Stokes-Einstein equation for measurements with QELSS of polymer adsorption by small particles. Macromolecules 12, 1947-1949 (1983). [18] Sze, A. et al. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. Journal of colloid and interface science 261, 402-10 (2003). [19] http://www.substech.com/dokuwiki/doku.php?id=stabilization_of_colloids &DokuWiki=9254b26f6969bc8bf8da63e01bf2b4f7 [20] http://www.nbtc.cornell.edu/facilities/downloads/Zetasizer%20 chapter%2016.pdf [21] http://www.laborchemie.com/en/brookhaven/introduction/zetapot.html [22] http://commons.wikimedia.org/wiki/File:Schema_MEB_(it).svg [23] http://en.wikipedia.org/wiki/File:Contact_angle.svg [24] http://pubs.rsc.org/en/Content/ArticleLanding/1977/F1/f19777300390 [25] Onda, T. et al. Super-Water-Repellent Fractal Surfaces. Langmuir 12, 2125-2127 (1996). [26] http://www.firsttenangstroms.com/products/fta100/fta100.html [27] Levine,S. et al. Interaction between two hydrophobic colloidal particles, using the approximate Debye-Hückel theory. I. General properties. Transactions of the Faraday Society 35,1125-1140 (1939). [28] Verwey, E. J. W. et al. Theory of the stability of lyophobic colloids (Amsterdam:Elsevier) 1948. [29] Kim, T. et al. Control of Gold Nanoparticle Aggregates by Manipulation of Interparticle Interaction. Langmuir 21,9524-9528 (2005). [30] Tadmor, R. et al. Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 6, 2380-2388 (2002). [31] Link, S. et al. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B 103, 8410–8426 (1999). [32] Berryman, J.G. Random close packing of hard spheres and disks. Physical Review A 27, 1053 (1983).
|