跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宗顏
研究生(外文):Tsung-Yen Chang
論文名稱:利用多重位元正反器降低時脈功率
論文名稱(外文):Clock Power Reduction Using Multi-bit Flip-Flops
指導教授:謝財明謝財明引用關係
指導教授(外文):Tsai-Ming Hsieh
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:43
中文關鍵詞:時脈功率多重位元正反器低電壓設計
外文關鍵詞:Clock PowerMulti-bit Flip-FlopsLow Power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在動態功率消耗中,時脈的功率一直是主要的消耗來源,因此減少時脈功率消耗成為一個重要的課題。近年來業界則提出新型態的正反器,稱為多重位元正反器,由於多重位元正反器的單位功率消耗與面積小於單一位元正反器,因此使用多重位元正反器取代多個單一位元正反器,可以有效的減少正反器所使用的功率消耗,同時可以減少整體正反器個數與正反器所佔面積。本篇論文提出將多個單一位元正反器合併為多重位元正反器的方法,達到減少整體正反器功率消耗的目的,同時符合時序限制和擺放正反器的面積限制。
本論文將單一位元正反器合併關係建立成merging graph,並且提出快速建立graph的方法,減少程式執行時間。接著定義Essential Prime Cover在graph之中搜尋出特定優先合併的正反器群組。在合併過程中,利用單一位元正反器合併對象的限制與可擺放區域的範圍作為合併的依據,儘可能合併出較多的多位元正反器,改善整體的功率消耗。從實驗結果得知,在業界所提供的測試數據,本論文平均降低整體功率消耗至78.07%,正反器個數降低75%,面積部份平均則減少3.75%的正反器所佔面積,顯示本論文所提出的方法是非常有效的。




In the dynamic power consumption, the clock power consumption is accounted for a large number of ratio, thus reducing the clock power consumption has become an important issue. We propose a method using multi-bit flip-flops for clock power saving. The advantages of merging single-bit flip-flops to multi-bit flip-flops not only reduce the total area of integrated circuit, but also decrease the clock network power consumption and total number of flip-flop. To acquire these advantages, the design must be guaranteed to satisfy timing constraint and placement density constraint in the merging process.
We present a fast approach of merging graph construction and we define Essential Prime Cover to determine which flip-flop should be merged eailier. According to Essential Prime Cover, we can obtain more multi-bit flip-flops to improve power consumption. The experimental results show that our proposed approach reduces 22% of the power consumption on the average. Meanwhile, the number of flip-flops and the total area of circuit reduced 75%, 3.75% on the average. Therefore, our approach is very effective and efficient.



摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
第二章 相關研究介紹 3
第三章 問題描述與定義 12
3.1 問題描述 12
3.2 問題定義 12
3.2.1 面積限制 13
3.2.2 時序限制 14
第四章 研究方法 16
4.1 程式流程 16
4.2 計算Feasible Region 17
4.3 快速建立Merging graph 18
4.4 定義Essential Prime Cover 20
4.5 挑選群組 21
4.6 擺放正反器 23
第五章 實驗結果 24
5.1 工作平台與程式語言 24
5.2 實驗數據和Library資訊 24
5.3 實驗結果 25
第六章 結論 33
參考文獻 34
作者簡介 36



[1]L.T. Wang, Y.W. Chang and K.T. Cheng, Electronic Design Automation: Synthesis, Verification, and Test, Morgan Kaufmann, ch.2, 2009.
[2]D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI chips,” IEEE Solid-State Circuits, vol. 29, no. 6, pp. 663-670, 1994.
[3]M. Donno, A. Ivaldi, L. Benini and E. Macii, “Clock-tree power optimization based on RTL clock-gating” in Proc. The 40th annual Design Automation Conference. DAC’03, pp. 622-627, 2003.
[4]S.K. Teng and N. Soin, “Low power clock gates optimization for clock tree distribution” in Proc. The 2010 11th International Symposium on Quality Electronic Design. ISQED’10, pp. 488-492, 2010.
[5]A. Khan, P. Watson, G. Kuo, D. Le, T. Nguyen, S. Yang, P Bennett, P. Huang, J. Gill, C. Hawkins, J. Goodenough, D. Wang, I, Ahmed, P. Tran, H. Mak, O. Kim, F. Matrin, Y. Fan, D. Ge, J. Kung and V. Shek, “A 90-nm Power Optimization Methodology with Application to the ARM 1136JF-S Microprocessor,” IEEE Solid-State Circuits, vol. 41, no. 8, pp. 1707-1717, 2006.
[6]J. Pangjun and S.S. Sapatnekar, “Low-power clock distribution using multiple voltages and reduced swings,” IEEE Very Large Scale Integration Systems, vol. 10, no. 3, pp. 309-318, 2002.
[7]Y. Lua, C.N. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang and J. Hu, “Navigating registers in placement for clock network minimization” in Proc. The 42th annual Design Automation Conference. DAC’05, pp. 176-181, 2005.
[8]Y. Cheon, P.H. Ho, A.B. Kahng, S. Reda and Q. Wang, “Power-aware placement” in Proc. The 42th annual Design Automation Conference. DAC’05, pp. 795-800, 2005.
[9]W. Hou, D. Liu and P.H. Ho, “Automatic register banking for low-power clock trees”, in Proc. The 2009 10th International Symposium on Quality Electronic Design. ISQED’09, pp. 647-652, 2009.
[10]L. Chen, A. Hung, H.M. Chen, E. Y.W. Tsai, S.H. Chen, M.H. Ku and C.C. Chen, “Using multi-bit flip-flop for clock power saving by designcompiler” in Proc. SNUG, 2010.
[11]I.H.R. Jiang, C.L. Chang, Y.M. Yang, E.Y.W. Tsai and L.S.F. Chen, “INTEGRA: Fast Multi-Bit Flip-Flop Clustering for Clock Power Saving Based on Interval Graphs” in Proc. The 2011 International Symposium on Physical Design. ISPD’11, pp. 115-122, 2011.
[12]S.H. Wang, Y.Y. Liang, T.Y. Kuo and W.K. Mak, “Power-Driven Flip-Flop Merging and Relocation” in Proc. The 2011 International Symposium on Physical Design. ISPD’11, pp. 107-114, 2011.
[13]Y.T. Chang, C.C. Hsu, M.P.H. Lin, Y.W. Tsai and S.F. Chen, “Post-Placement Power Optimization with Multi-Bit Flio-Flops” in Proc. The 2010 International Conference on Computer-Aided Design. ICCAD’10, pp. 218-223, 2010.
[14]J.T. Yan and Z.W. Chen, “Construction of constrained multi-bit flip-flops for clock power reduction” in Proc. The 2010 International Conference on Green Circuits and Systems. ICGCS’10, pp. 675-678, 2010.
[15]Z.W. Chen and J.T. Yan, “Routability-driven flip-flop merging process for clock power reduction” in Proc. The 2010 International Conference on Computer Design. ICCD’10, pp. 203-208, 2010.
[16]A.B Kahng and C.W. Tsao. Bounded-skew clock tree routing – version 1.0. http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文