跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智超
研究生(外文):Chih-Chao Yang
論文名稱:正型鍺之鈀金歐姆接觸結構及其應用於雙結太陽能電池之研究
論文名稱(外文):Study of Pd/Au Ohmic Contact on P-Type Ge and Its Application to GaAs/Ge Dual-Junction Solar Cells
指導教授:吳志宏吳志宏引用關係廖森茂
指導教授(外文):Chih-Hung WuSen-Mao Liao
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:毆姆接觸鈀/金
外文關鍵詞:ohmic contactPd/Au
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在本論文中,我們將會先從探討鈀的厚度在鈀/金以及鈀/銀/金沉積在正型鍺當作歐姆接觸金屬結構之影響,為了得到最低的特徵阻值ρc,我們尋求最佳之鈀的金屬厚度還有最佳的回火條件,並且運用傳輸線模型法(TLM)計算出鈀/金金屬材料在正型鍺的特徵阻值。實驗結果顯示,在鍺(30nm)/金(60nm)在350℃兩分鐘的回火條件下,能夠形成此系列之最佳特徵阻值( ρc=6×10-6 Ω-cm2 )。接著,利用相同方式找尋鈀/銀/金金屬材料在正型鍺的特徵阻值,發現當鈀(20nm)/銀(60nm)/金(20nm) 在350℃兩分鐘的回火條件下,也能形成此系列之最佳特徵阻值
( ρc=3.9×10-5 Ω-cm2 )。
緊接著,將具有最低特徵阻值的歐姆接觸金屬組成結構(亦即鈀 (30nm)/金(60nm)以及鈀(20nm)/銀(60nm)/金(20nm)) 蒸鍍在雙接面(GaAs/Ge)太陽能電池當作背電極,來探討鈀/金姆接觸金屬材料應用於元件上之後的元件特性,如同歐姆接觸金屬蒸鍍在正型鍺基板上的結果,太陽能電池的效率(Eff)、填充因子(FF)、短路電流(Isc)、開路電壓(Voc)皆在最佳歐姆接觸金屬組成的最佳條件下有最好的表現。


Abstract
In this dissertation, we discussed the effects of thickness Pd on the Pd / Au and Pd / Ag / Au ohmic contact metallurgical structure deposited on P-Ge material. At first ,we studied the optimum thickness of the Pd layer and the suitable annealing temperature and time for obtaining the lowest specific contact resistance ρc on P-Ge by transmission line model method (TLM).We found out that the optimum metallurgical structure is Pd (30 nm) / Au (60 nm) after annealed at 350 ℃ for 2 minutes. The lowest value ρc=6×10-6 Ω-cm2 of specific contact resistance could be attained. Then, we used the same method to study the optimum thickness of the Pd、Ag and Au layers and the suitable annealing temperature and time for the lowest specific contact resistance ρc. We found out that the optimum metallurgical structure is Pd (20 nm) / Ag (60 nm) / Au (20 nm), in which the lowest specific contact resistance value ρc=3.9×10-5 Ω-cm2 could be attained when the sample is annealed at 350℃ for 2 minutes.
Then, we applied the optimum ohmic contact metallurgical structure Pd (30 nm) /Au (60 nm) and Pd (20 nm) / Ag (60 nm) / Au (20nm), respectively, as the p-type ohmic contact of dual-junction (DJ) solar cells. After that, we measured the efficiency (Eff), fill factor (FF), open circuit voltage (Voc) and short circuit current (Isc) of solar cells. The measured results indicate that solar cells had the best performance when having the ohmic contact fabricated at the optimum conditions.


Content
Abstract(Chinese)...............................I
Abstract(English)..............................II
Acknowledgment.................................IV
Content.........................................V
Figure captions...............................VII
List of Tables................................XIV
Chapter 1 Introductions.........................1
Chapter 2 Theoretic foundations.................4
2.1 Metal and semiconductor contact theory....4
2.2 Transmission Line Model (TLM).............6
2.3 Measurement method........................8
2.4 Basic concepts of the solar cell..........9
2.5 Equivalent circuit analysis of the solar cell...........................................10
2.6 Fundamental solar cell parameters........11
Chapter 3 Fabrication process and electric characteristic of ohmic contact metals.........20
3.1 Ge TLM fabrication process...............20
3.1.1 Wafer cleaning process................20
3.1.2 Photolithography process..............21
3.1.3 Metal deposition......................21
3.1.4 Mesa etching process..................22
3.2 Results and discussions..................22
3.2.1 Analysis system.......................23
3.2.2 Specific contact resistance analysis..23
3.2.2 (a)Pd/Au.............................23
(b)Pd/Ag/Au..........................24
3.2.3 Surface morphology....................25
3.2.4 Energy Dispersive Spectrometer (EDS)analysis.......................................25
Chapter 4 Characteristics of the GaAs/Ge dual-junction solar cell............................42
4.1 GaAs/Ge dual-junction solar cell structure.42
4.2 Dual-junction solar cell fabrication process........................................42
4.2.1 Front surface process..........................................................................42
4.2.2 Back surface process………………………………………………..43
4.3 Current-Voltage (I-V) measurement system ……………………….......44
4.4 Characteristics of the GaAs/Ge dual –junction solar cell……………....44
Chapter 5 Conclusions……………………………………………………...58
References…………………………………………………………………...60

Figure Captions
Figure 1.1 Schematic cross-sections of the GaInP/GaAs/Ge triple junction solar cell………………………………………………………………………...3
Figure 2.1 A Schottky barrier formed by contacting an n-type semiconductor with a metal having a larger work function: band diagram for the metal and semiconductor before joining………………………………………………14
Figure 2.2 Band diagram for the junction at equilibrium……………………14
Figure 2.3 Ohmic metal-semiconductor contact: Φm < Φs for an n-type semiconductor at the equilibrium band diagram for the junction……………15
Figure 2.4 Ohmic metal-semiconductor contact: Φm > Φs for a p-type semiconductor at the equilibrium band diagram for the junction……………15
Figure 2.5 Ohmic metal-semiconductor contact: Heavy doped for an n-type semiconductor at the equilibrium band diagram for the junction……………16
Figure 2.6 Ohmic metal-semiconductor contact: Heavy doped for a p-type semiconductor at the equilibrium band diagram for the junction……………16
Figure 2.7 A slab of material with ohmic contacts on the two ends exhibits a resistance composed of the end-to-end resistance of the material, plus the two contact resistance……………………………………………………………17
Figure 2.8 The approaches used to model the ohmic contact of a transmission line……………………………………………………………………………17
Figure 2.9 Basic pattern used to experimentally determine contact resistance parameters. Ohmic contacts are separated by increasing distance………18
Figure 2.10 Plot of measure resistance as a function of contact separation yields sheet resistance, contact resistance, and other parameters……………18
Figure 2.11 Equivalent circuit of a solar cell, including series and shunt resistance…………………………………………………………………19
Figure 2.12 Terminal I-V properties of p-n junction diode in the dark and in illumination………………………………………………………………19
Figure 3.1 Electron beam evaporation system………………………………28
Figure 3.2 Variations of specific contact resistivity for Pd (10 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………………………………29
Figure 3.3 Variations of specific contact resistivity for Pd (20 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………………………………29
Figure 3.4 Variations of specific contact resistivity for Pd (30 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………………………………30
Figure 3.5 Variations of specific contact resistivity for Pd (40 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………………………………30
Figure 3.6 Variations of specific contact resistivity for Pd (60 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………………………………31
Figure 3.7 Variations of specific contact resistivity for Pd (30 nm)/Au (60 nm) metal structure deposited on p-type Ge after annealed at different temperature
in pure N2 ambient………………………………………………………31
Figure 3.8 Measured specific contact resistance as a function of annealing time for Pd (30 nm)/Au (60 nm) metal structure deposited on p-type Ge substrate after annealed at 350 ℃ in pure N2 ambient…………………………32
Figure 3.9 Variations of specific contact resistivity for Pd (5 nm)/Ag (60 nm)/Au (20 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient…………………....32
Figure 3.10 Variations of specific contact resistivity for Pd (10 nm)/Ag (60 nm)/Au (20 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient………………33
Figure 3.11 Variations of specific contact resistivity for Pd (20 nm)/Ag (60 nm)/Au (20 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient………………33
Figure 3.12 Variations of specific contact resistivity for Pd (30 nm)/Ag (60 nm)/Au (20 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient………………34
Figure 3.13 Variations of specific contact resistivity for Pd (40 nm)/Ag (60 nm)/Au (20 nm) metal structure deposited on p-type Ge after annealing at different temperature for various time in pure N2 ambient………………34
Figure 3.14 The surface morphology of Pd (30 nm)/Au (60 nm) after annealed at 260 ℃ in pure N2 ambient (500X)………………………………………35
Figure 3.15 The surface morphology of Pd (30 nm)/Au (60 nm) after annealed at 320 ℃ in pure N2 ambient (500X)………………………………………35
Figure 3.16 The surface morphology of Pd (30 nm)/Au (60 nm) after annealed at 350 ℃ in pure N2 ambient(500X)……………………………………36
Figure 3.17 The surface morphology of Pd (30 nm)/Au (60 nm) after annealed at 400 ℃ in pure N2 ambient(500X)……………………………………36
Figure 3.18 The surface morphology of Pd (20 nm)/Ag (60 nm)/Au (20 nm) after annealed at 320 ℃ in pure N2 ambient (500X)………………………37
Figure 3.19 The surface morphology of Pd (20 nm)/Ag (60 nm)/Au (20 nm) after annealed at 350 ℃ in pure N2 ambient (500X)…………………37
Figure 3.20 The surface morphology of Pd (20 nm)/Ag (60 nm)/Au (20 nm) after annealed at 400 ℃ in pure N2 ambient(500X)……………………38
Figure 3.21 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (30 nm)/Au (60 nm) metal structure after annealed at 260 ℃ in pure N2 ambient……………………38
Figure 3.22 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (30 nm)/Au (60 nm) metal structure after annealed at 320 ℃ in pure N2 ambient……………………39
Figure 3.23 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (30 nm)/Au (60 nm) metal structure after annealed at 350 ℃ in pure N2 ambient……………………39
Figure 3.24 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (30 nm)/Au (60 nm) metal structure after annealed at 400 ℃ in pure N2 ambient……………………40
Figure 3.25 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (20 nm)/Ag (60 nm)/Au (20 nm) metal structure after annealed at 320 ℃ in pure N2 ambient…………40
Figure 3.26 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (20 nm)/Ag (60 nm)/Au (20 nm) metal structure after annealed at 350 ℃ in pure N2 ambient…………41
Figure 3.27 Percentage of composition and the associated specific contact resistance as a function of annealing time for Pd (20 nm)/Ag (60 nm)/Au (20 nm) metal structure after annealed at 400 ℃ in pure N2 ambient……41
Figure 4.1 Schematic cross-sections of the GaAs/Ge Dual -junction solar cell…………………………………………………………………………….49
Figure 4.2 Schematic of the current-voltage characteristic measurement
system (solar simulator)……………………...…………………………….….50
Figure 4.3 Light I-V curve and output power of the Pd (10 nm)/Au (60 nm) metal structure after annealed at 350 ℃ for GaAs/Ge Dual -junction solar cell……………………………………………………………………………..51
Figure 4.4 Light I-V curve and output power of the Pd (30 nm)/Au (60 nm) metal structure after annealed at 330 ℃for GaAs/Ge Dual -junction solar cell……………………………………………………………………………..51

Figure 4.5 Light I-V curve and output power of the Pd (30 nm)/Au (60 nm) metal structure after annealed at 350 ℃for GaAs/Ge Dual -junction solar cell……………………………………………………………………………..52
Figure 4.6 Light I-V curve and output power of the Pd (30 nm)/Au (60 nm) metal structure after annealed at 365 ℃for GaAs/Ge Dual -junction solar cell………………………….…………………………………………………52
Figure 4.7 Light I-V curve and output power of the Pd (60 nm)/Au (60 nm) metal structure after annealed at 350 ℃for GaAs/Ge Dual -junction solar cell……………………………………………………………………………..53
Figure 4.8 Light I-V curve and output power of the Pd (20 nm)/Ag (60 nm)/Au (20 nm) metal structure after annealed at 350 ℃for GaAs/Ge Dual -junction solar cell…………………………………………………………………….…53
Figure 4.9 The Jsc versus annealing temperature of Pd (30 nm)/Au (60 nm) for 2 minutes in pure N2 ambient under one-sun………………………………….54
Figure 4.10 The Voc versus annealing temperature of Pd (30 nm)/Au (60 nm) for 2 minutes in pure N2 ambient under one-sun……………………………...54
Figure 4.11 The fill factor versus annealing temperature of Pd (30 nm)/Au (60 nm) for 2 minutes in pure N2 ambient under one-sun…………………………55
Figure 4.12 The efficiency versus annealing temperature of Pd (30 nm)/Au (60 nm) for 2 minutes in pure N2 ambient under one-sun…………………………55
Figure 4.13 The Jsc versus different contact structures after annealed 350℃ for 2 minutes in pure N2 ambient under one-sun………………………………….56
Figure 4.14 The Voc versus different contact structures after annealed 350℃ for 2 minutes in pure N2 ambient under one-sun……………………………..56
Figure 4.15 The fill factor versus different contact structures after annealed 350℃ for 2 minutes in pure N2 ambient under one-sun………………………57
Figure 4.16 The efficiency versus different contact structures after annealed 350℃ for 2 minutes in pure N2 ambient under one-sun………………………57

List of tables
Table 2.1 Work functions of some metals…………………………………13
Table 2.2 Electron affinity of some semiconductors………………………13
Table 3.1 Composite structure of the Pd/Au……………………………27
Table 3.2 Composite structure of the Pd/Ag/Au………………………27
Table 4.1 The different metal condition and annealing condition of the samples applied in DJ solar cell……………………………………………………….47
Table 4.2 Compare the output parameters with different annealing temperature for 2 minutes in pure N2 ambient under one-sun……………………………...47
Table 4.3 Compare the output parameters with different contact structures after annealed 350℃ for 2 minutes in pure N2 ambient under one-sun…………….48

References
[1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25 (1954), 676-677.
[2]Nasser H. Karam, Richard R. King Moran Haddad, James H. Ermer, Hojun Yoon, etc., Solar Energy Materials & Solar Cells 66 (2001) 453-466.
[3]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, Solar Energy Materials & Solar Cells 90 (2006) 57-67.
[4]J. M. Olson, S. R. Kurtz, A. E. Kibbler. P. Faine, "A 27.3% Efficient Ga0.5In0.5P/GaAs Tandem Solar Cell," Appl. Phys. Left. 56, pp.623 (1990).
[5]T. Takamoto, M Yamaguchi, S. J. Taylor, E. Ikeda, T. Agui, and H. Kurita, "High-Efficiency Radiation Resistant InGaP/GaAs Tandem Solar Cells," Proc. 26th IEEE Photovoltaic Specialists Conf. (PVSC) (1997), pp.887.
[6]N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer,M. Haddad, L. Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R. Lillington, E. M. Keyes, and R. K. Ahrenkiel, IEEE Trans. on Nectron Devices 46, p.2116 (1999).
[7]N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D, E. Joslin. D. D. Krut, M. Takahashi, W. Nishikawa. M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and D. R. Lillington, "Recent Developments in High-Efficiency Ga0.5ln0.5P/GaAs/Ge Dual- and Triple-Junction Solar Cells: Steps to Next-Generation PV Cells," to be publ. Solar Energy Materials and Solar Cells, 2000.
[8]R. R. King, N. H. Karam, J. H. Ermer, M. Haddad, P. Colter, T. Isshiki, H. Yoon, H. L. Cotal, D. E. Joslin, D. D. Krut, R. Sudharsanan, K. Edmondson, B.T. Cavicchi, and D.R. Lillington, "Next-Generation, High-Efficiency III-V Multijunction Solar Cells," Proc. Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE.
[9]M. S. Unlu, S. Strite, K. Adomi, G. B. Gao, and H. Morkoc, Electronics Letters, 26 (1990) pp.89-91.
[10] Xiaoping Shao, S. L. Rommel, B. A. Orner, Paul R. Berger, J. Kolodzey, and K. M. Unruh, IEEE Electron Device Letters, 18 (1997) pp.7-9.
[11] O. Savadogo and K. C. Mandal, 27 (1994) 1070-1075.
[12] Stephen J. Pearton, Processing of wide bandgap semiconductors, 2000, ISBN 0-8155-1439-5.
[13] Ben G. Streetman “SOLID STATE ELECTRONIC DEVICES 4th edition” Prentice Hall Series in Solid State Physical Electronics, Nick Holonyak, Jr., Series Editor, pp.183 -189.
[14] A. Y. Yu, "Electron tunneling and contact resistance of metal – silicon contact barriers," Solid-State Electron., Vol. 13, pp. 239-247, 1970.
[15] C. Ting and C. Chen, "A study of the contacts of a diffused resistor," Solid-State Electron., Vol. 14. pp. 433-438, 1971.
[16] G. K. Reeves and H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements,' Electron. Device Lett., EDL - 3 , pp.111-113, 1982.
[17] H. H. Berger, Dig. Tech. Pap. ISSCC p.160 (1969).
[18] H. Murrmann and D. Widmann, Dig. Tech. Pap. ISSCC, p. 162 (1969).
[19] H. Murrmann and D. Widmann, Solid-St. Electron. Vol.12, 879 (1969).
[20] H. Murrmann and D. Widmann, IEEE Trans. Electron Devices, ED-16, 1022 (1969).
[21] H. H. Berger, Solid-State Electronics, Vol.15, 1972, p. 844.
[22] Sze, Physics of semiconductor devices, 2nd Edition
[23] Mitsuo Fukuda, “Optical Semiconductor Devices ,” John Wiley & Sons, Inc., p. 220-221.
[24] Dieter K. Schroder, “Semiconductor material and device characterization 2th,” John Wiley & Sons, Inc., p. 209.
[25] Martin A. Green, “Solar Cells: Operating Principles, Technology, and System Applications,” Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632, p.79-81 and p. 96.
[26] 卓可甡,鍺材料金屬接觸電極與其應用之研究,中原大學碩士論文(2006)

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張顯洋(2001).個人數位秘書PDA在臨床護理工作的應用-以慈濟醫學中心護囑資訊系統整合之整合研究為例.醫院,34,9-15。
2. 曾瑞譙(2008).電腦輔助教學軟體使用後之效益分析-科技接受模式的觀點與應用.新竹教育大學教育學報,26(2),127-163。
3. 曾旭民、詹碧端、姜靜穎(2009).應用科技接受模式探討護理人員對行動護理站接受度的影響因素.醫療資訊雜誌,18(1),23–38。
4. 陳福基、蕭世榮、陳啟元、杜素珍(2005).影響醫院接受行動護理站因素之研究-以南部某區域教學醫院為例.資訊管理學報,12,67-89。
5. 陳羅傑、陳凱凌(2008).以科技接受模型探討矯正機構遠距接見系統接受度之研究.績效與策略研究,5(2),17-32。
6. 陳建雄、陳尤澤、簡佑宏(2006).攜帶型行動通訊電腦介面之資訊呈現與色彩配置方式對使用者視覺搜尋績效之影響,設計學報,11(1),23-39。
7. 陳琍(2002).個人數位助理(PDA)在臨床護理之應用與推展.慈濟護理雜誌, 1 (1),11-15 。
8. 陳威助(2007).台灣地區資訊教育與數位落差問題探討.資訊社會研究,13,193-228。
9. 胡勝川(2002).急診醫療之品質管理及電腦化.慈濟護理雜誌,1(3),17-20。
10. 林純旭、李亭亭(2010).提升護理競爭力-淺談數位落差.護理雜誌,57(1),95-99。
11. 李葆瑋、劉長安(2001).探討內外科病房護理人員每日工作時間分配.榮總護理,18(2),193-203。
12. 李作英、王如華、徐姍姍、陳麗芳、張雪吟(1998).護理資訊化個人數位處理器(PDA)在臨床護理之運用.護理雜誌,45(1),69-76 。
13. 李德竹(2000).資訊素養的意義、內涵與演變.圖書與資訊學刊,35,1-25。
14. 李德竹(2000).資訊素養的意義、內涵與演變.圖書與資訊學刊,35,1-25。
15. 方世榮、許秋萍(2005).科技型與人際型服務接觸對關係利益的影響.管理評論,24(2),53-76。