跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮新日光
研究生(外文):NGUYEN-TAN-NHUT QUANG
論文名稱:應用於血糖感測系統之電流至頻率轉換器
論文名稱(外文):Linear Current to Frequency Converter Applied for Glucose Sensing System
指導教授:鍾文耀鍾文耀引用關係
指導教授(外文):WEN YAW-CHUNG
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:電流至頻率轉換器
外文關鍵詞:A/D ConverterLinear Current to Frequency ConverterCurrent Controlled Converter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的目標是設計一個線性電流至頻率轉換器,應用在安培電位式血糖量測系統之上。本系統分為兩個部分,分別是前端類比部分和後端數位部分。
在整個線性電流至頻率轉換器中,前端主要是用傳統電荷平衡的震盪器為主要架構,將輸入電阻替換成電流控制電阻,這樣一個線性化的技術,可以做一個線性化處理,使得輸出頻率線性化。另外,設計了一個三種增益切換電路,可以調整輸入範圍和輸入動態範圍,讓系統可以適用於目標應用。使用nanosim進行佈局後模擬,分別顯示三個增益的輸入動態範圍在一般情況下為400nA到3.5uA、2uA到16uA和4uA到32uA;線性度為99%,功率消耗為926.48uW。最後使用TSMC0.35um製程將整個系統進行下線。
整個血糖量測系統後端數位部分,使用微控制器MPC82G516A程式化一個計數器,完成類比轉數位轉換器。最後,將轉換完的數據顯示在兩行的液晶顯示器上。


This research mainly aims to design a linear Current to Frequency converter (CFC) which is applied for glucose sensing system where amperometric electrochemical sensors are used. To complete the whole system, two parts, analog front-end and digital back-end, were designed.
Analog front-end is linear CFC where the conventional charge balance oscillator was adopted to build main structure. One modify was done is that the input resistor was replaced by the current controlled resistor (CCR) where a linearize technique was used to linearize the output frequency. Furthermore, conditioning circuit was also designed to acquire three sets of input range and extend the origin of input dynamic range of the linear CFC to make it appropriate for target application. Post-simulation results by using nanosim show three sets of input dynamic range 400 nA to 3.5 µA, 2 µA to 16 µA, and 4 µA to 32 µA with linearity of 99.0% and power consumption of 926.48 µW for typical case. The linear CFC was taped out by using TSMC 0.35 µm technology.
Digital back-end is MCU, MPC82G516A which was programmed to work as a counter to complete the A/D converter for the glucose sensing system. Finally, the conversion data was displayed on a two-line LCD.


Table of Contents
摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Tables vii
List of Figures viii
Chapter 1: Introduction 1
1.1 Background of study 1
1.2 Statement of the problem 6
1.3 Significance of the study 8
1.4 Objectives 9
1.4.1 General objective 9
1.4.2 Specific objective 9
1.5 Scope and delimitations 10
Chapter 2: Review of Related Literature 11
2.1 Introduction 11
2.2 Switch Current CFC 11
2.3 Square Rooting CFC 15
2.3.1 MOS Current Controlled Resistor [9], [10] 15
2.3.2 MOS Current Controlled Resistor Based CFC [11] 17
Chapter 3: Theoretical Consideration and Materials 19
3.1 Introduction 19
3.2 Linear Current Controlled Resistor 19
3.3 Linear Current to Frequency Converter 24
3.3.1 Circuit Description 24
3.3.2 Differences between previous works and this linear CFC 29
3.4 Folded Cascode Operational Amplifier 29
3.5 Two-stage Comparator 31
3.6 Digital Timing Reference 33
3.7 Microcontroller Unit (MCU) – Megawin MPC82G516A 38
Chapter 4: Design Consideration 42
4.1 Introduction 42
4.2 Folded Cascode OTA 42
4.3 Two-stage Comparator 46
4.4 Bias Circuits 50
4.5 Current Controlled Resistor 54
4.6 Digital Timing Reference 57
4.7 Conditioning Circuit 65
4.8 Layout Consideration 67
4.9 MCU Programming 67
Chapter 5: Simulation Results and Discussion 70
5.1 Folded Cascode OTA 70
5.2 Comparator 72
5.3 Digital timing reference 74
5.4 Conditioning circuit 75
5.5 Current controlled resistor 76
5.6 Linear Current to Frequency Converter 77
Chapter 6: Conclusion 84
Reference 86
Appendix 88
Appendix A – Linear CFC Testing and System Integrated Configuration 88
Appendix B – SPICE Netlist 90
Appendix C – MCU – C Language Code 94
Research Publication 99
Questions and Recommendations 100

List of Tables
Table 1 1: Characteristic of the readout circuit 7
Table 4 1: Parameter extraction 43
Table 4 2: Device size of hand-calculation and pre-simulation 45
Table 4 3: Pre-simulation results of the folded cascode OTA 46
Table 4 4: Device size of hand-calculation and pre-simulation 49
Table 4 5: Pre-simulation results of the two-stage comparator 49
Table 4 6: Device size of the linear CCR 55
Table 4 7: Truth table of NOR gate RS latch 62
Table 4 8: Truth table of JK Flip Flop 63
Table 4 9: Truth table D Flip Flop 64
Table 4 10: Truth table of the switch circuit 66
Table 5 1: Post-simulation results of folded cascode OTA 71
Table 5 2: Post-simulation results of two-stage comparator 72
Table 5 3: Summary of post-simulation results of linear CFC 83
Table 6 1: Comparison between this work and previous works 85

List of Figures
Figure 1 1: Two-electrode chemical sensor 2
Figure 1 2: Three-electrode chemical sensor 4
Figure 1 3: Potentiostat- Readout circuitc 5
Figure 1 4: The implantable glucose sensing system 6
Figure 1 5: The Bioptik two-electrode chemical sensor 7
Figure 1 6: The output current of the readout circuit when measure glucose from 50 to 400 mg/dL 8
Figure 2 1: Switch current CFC 12
Figure 2 2: Switch current integrator with hold-and-reset switch 13
Figure 2 3: Current mode Schmitt trigger circuit 14
Figure 2 4: MOS current controlled resistor [9] 16
Figure 2 5: Square rooting CFC [11] 18
Figure 3 1: MOS floating resistor topology 20
Figure 3 2: The floating resistor with the two grounded resistor [13] 21
Figure 3 3: A very high value current controlled resistor [13] 23
Figure 3 4: PMOS version of the very high value current controlled resistor 24
Figure 3 5: Current balance VFC [12] 26
Figure 3 6: Timing diagram of the voltage to frequency converter shown in Figure 2-5 [11] 28
Figure 3 7: Schematic of Folded Cascode OTA 30
Figure 3 8: (a) Simple current sink and (b) standard cascode 31
Figure 3 9: Two stage comparator 32
Figure 3 10: Timing reference circuit. a) Nor gate. b) Not gate. c) Timing reference schematic 34
Figure 3 11: Response of the RC one-shot circuit when frequency of the input signal is higher than the recovery time of capacitor 35
Figure 3 12: Simplified of the digital timing reference 36
Figure 3 13: Digital timing reference waveform 38
Figure 3 14: Block diagram of MCU MPC82G516A 41
Figure 4 1: Beta-multiplier reference 50
Figure 4 2: Beta-multiplier with start-up circuit 52
Figure 4 3: Cascode beta-multiplier reference circuit 53
Figure 4 4: Transimpedance amplifier 54
Figure 4 5: The resistance of the current controlled resistor when Iin is varied from 0.1 uA to 2.6 uA with a 500nA step 56
Figure 4 6: The resistance of the current controlled resistor when Iin is varied from 0.1 uA to 2.6 uA with a 500nA step at 0ºC 56
Figure 4 7: The resistance of the current controlled resistor when Iin is varied from 0.1 uA to 2.6 uA with a 500nA step at 70ºC 57
Figure 4 8: Complementary MOS (CMOS) inverter 58
Figure 4 9: NAND gate 60
Figure 4 10: a) NOR gate b) NAND-3 gate 61
Figure 4 11: NOR gate RS latch 62
Figure 4 12: JK Flip Flop 63
Figure 4 13: Simulation of JK Flip Flop 63
Figure 4 14: D Flip Flop 64
Figure 4 15: 4 Bits Counter 65
Figure 4 16: Circuit Diagram of conditioning circuit 65
Figure 4 17: Switch circuit 66
Figure 4 18: MCU - Pulse count routine 69
Figure 5 1: Folded cascode OTA 70
Figure 5 2: Layout of folded cascode OTA 70
Figure 5 3: Two-stage comparator 72
Figure 5 4: Layout of two-stage comparator 73
Figure 5 5: Digital timing reference 74
Figure 5 6: Layout of digital timing reference 74
Figure 5 7: Conditioning circuit 75
Figure 5 8: Layout of conditioning circuit 75
Figure 5 9: Current controlled resistor 76
Figure 5 10: Layout of current controlled resistor 76
Figure 5 11: Linear current to frequency converter 77
Figure 5 12: Layout of linear current to frequency converter 78
Figure 5 13: DRC check of CFC layout 78
Figure 5 14: LVS check of CFC layout 79
Figure 5 15: Floor plan layout of linear CFC 79
Figure 5 16: Post-simulation of power dissipation of CFC for set 1:1 with 2uA input current 80
Figure 5 17: Post-simulation output signal of CFC for set 1:1 with 2uA input current 80
Figure 5 18: Linearity of CFC of the set 1:1 81
Figure 5 19: Linearity of CFC of the set 5:1 81
Figure 5 20: Linearity of CFC of the set 10:1 82
Figure 0 1: Linear CFC testing configuration 88
Figure 0 2: Simplified glucose sensing system configuration 89


Reference
[1.]This Page, O., Diabetes in Wikipedia.
[2.]Diamond, D., Principles of chemical and biological sensors. 1998: Wiley-Interscience.
[3.]Eggins, B.R., Chemical sensors and biosensors. 2002: Wiley.
[4.]Chung, W.Y., et al. A Wide Current Range Readout Circuit with Potentiostat for Amperometric Chemical Sensors. 2009: Springer.
[5.]Klonowski, P., Analog-to-Digital Conversion Using Voltage-to-Frequency Converters. AN276, Analog Devices.
[6.]Kester, W.A. and A. Devices, Data conversion handbook. 2005: Newnes.
[7.]Kester, W. and J. Bryant, Voltage-to-Frequency Converters.
[8.]Kuroda, Y., A. Hyogo, and K. Sekine, A Current-to-Frequency Converter for Switched-Current Circuits. Analog Integrated Circuits and Signal Processing, 1999. 20(2): p. 145-148.
[9.]Tadic, N. and D. Gobovic, A voltage-controlled resistor in CMOS technology using bisection of the voltage range. Instrumentation and Measurement, IEEE Transactions on, 2002. 50(6): p. 1704-1710.
[10.]Wang, C.C., et al., Voltage-to-frequency converter with high sensitivity using all-MOS voltage window comparator. Microelectronics Journal, 2007. 38(2): p. 197-202.
[11.]Tadic, N. and D. Gobovic, A square-rooting current-to-frequency converter. Instrumentation and Measurement, IEEE Transactions on, 2003. 52(4): p. 1035-1040.
[12.]Williams, J., Designs for High Performance Voltage-to-Frequency Converters. Application Note. 14.
[13.]Al-Sarawi, S.F., A novel topology for grounded-to-floating resistor conversion in CMOS technology. Microelectronics Journal, 2002. 33(12): p. 1059-1069.
[14.]Mahmoud, S.A., H.O. Elwan, and A.M. Soliman, Generation of CMOS voltage-controlled floating resistors. Microelectronics Journal, 1997. 28(6-7): p. 627-640.
[15.]Allen, P.E., D.R. Holberg, and I. Books24x, CMOS analog circuit design. Vol. 269. 2002: Oxford University Press New York.
[16.]Gray, P.R., et al., Analysis and design of analog integrated circuits. 1993.
[17.]Tocci, R.J., Fundamentals of pulse and digital circuits. 1972: Merrill.
[18.]Tadi, N. and D. Gobovi, Smart sensor interfacing circuit using square-rooting current-to-frequency conversion. International Journal of Electronics, 2007. 94(12): p. 1075-1098.
[19.]Megawin, MPC82G516A Datasheet.
[20.]Razavi, B., Design of Analog CMOS Integrated Circuits, ser. 2001: McGraw-Hill Series in Electrical and Computer Engineering. New York, USA: McGraw-Hill.
[21.]Baker, R.J., CMOS: Circuit design, layout, and simulation. 2008: Wiley-IEEE Press.
[22.]Hodges, D., H. Jackson, and R. Saleh, Analysis and design of digital integrated circuits. 2003: McGraw-Hill, Inc. New York, NY, USA.
[23.]Kaeslin, H., Digital integrated circuit design: from VLSI architectures to CMOS fabrication. 2008: Cambridge Univ Pr.
[24.]Sicard, E., S.B. Dhia, and S.D. Bendhia, Basics of cmos cell design. 2007: McGraw-Hill Professional.
[25.]S.P.Bali, 2000 solved problems in digital electronics.
[26.]Hastings, A. and R.A. Hastings, The art of analog layout. 2001: Prentice Hall.
[27.]Bonazzola, G.C., et al., Performances of a VLSI wide dynamic range current-to-frequency converter for strip ionization chambers* 1. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998. 405(1): p. 111-120.
[28.]Steinberg, M.D. and C.R. Lowe, A micropower amperometric potentiostat. Sensors and Actuators B: Chemical, 2004. 97(2-3): p. 284-289.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top