跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳俊達
研究生(外文):Chun-Ta Wu
論文名稱:大型雙足機器人之設計與實現:使用智慧型控制器
論文名稱(外文):Design and implementation of large-scale biped robot: using intelligent controller
指導教授:邱智煇涂世雄涂世雄引用關係
指導教授(外文):Chih-Hui ChiuShih-Hsiung Twu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:雙足機器人正向運動學重心計算模糊控制
外文關鍵詞:biped robotforward kinematicscenter of gravityfuzzy control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是設計與實現大型雙足機器人,此機器人擁有10個自由度並以靜態步行規劃行走步伐。過去學術界多是以市售的小型雙足機器人套件作為機器人研究平台,小型雙足機器人硬體與控制電路已由廠商製作完成,使用者僅需下達各關節轉動命令即可控制且適用於研究領域,難以應用到日常生活。國外大型雙足機器人製作成本高達數百萬,國內一般學術機構難以承擔其研究成本,基於此考量,本作品發展出一套低建置成本的大型雙足機器人系統,期望能有效降低大型雙足機器人之研究門檻。
機構方面我們參考了萬向接頭的觀念設計出萬向關節,使機器人的自由度更接近人類雙足,動作規劃依據靜態步行的原則,運用正向運動學、機器人整體重心計算等,規劃出穩定的機器人運動參考軌跡,再透過控制程式進行內差值計算,使得機器人行走更加平順,我們使用模糊邏輯控制器作為機器人關節定位控制器用以維持動作,由於機器人運動時需同時控制十顆馬達,對於系統運算負擔頗大,我們設計一套多晶片控制架構,能同時使用多組單晶片控制板作平行處理分擔運算工作。此外由於機器人機構方面有許多無法避免之間隙,造成機器人行走晃動,我們設計一個震盪消除控制器用來消除機器人行走時的晃動。最後由實驗中表現出具有相當之穩定性。

In this thesis, we design and implement a large-scale biped robot. The robot has ten degrees of freedom. Traditional large-scale biped robot is very expensive, thus we attempt to design a low cost biped robot in order to cut down the threshold in studying large-scale biped robot. The robot's static walking is planned by forward kinematics and COG (center of gravity). The stability of a biped robot depends on its COG if COG of a biped robot falls in the certain region. Furthermore, to make the system walking more smooth and stable, we used Mamdani type fuzzy logic controller to robot tracking control and anti-swing control. Due to ten motors act in the same time, we design multi-chip parallel processing control structure. Finally, the experimental results of propose large-scale biped robot demonstrates the good performance of the whole control system.

目錄
中文摘要................................................................................................................I
英文摘要..............................................................................................................II
誌謝.....................................................................................................................III
目錄.....................................................................................................................IV
圖目錄.................................................................................................................VI
表目錄..............................................................................................................VIII
第一章 簡介.........................................................................................................1
第二章 雙足機器人系統.....................................................................................5
2.1 雙足機器人之硬體架構................................................................................5
2.1.1 機構設計.................................................................................................6
2.1.2 萬向關節.................................................................................................7
2.1.3 馬達選擇...............................................................................................10
2.1.4 鏈輪........................................................................................................10
2.1.5 電位計...................................................................................................11
2.1.6 陀螺儀...................................................................................................13
2.2 電路系統......................................................................................................14
2.2.1 類比/數位轉換電路..............................................................................14
2.2.2 數位訊號處理器...................................................................................16
2.2.3 訊號轉換電路.......................................................................................18
2.2.4 馬達驅動電路.......................................................................................19
2.2.5 電源供應電路.......................................................................................20
2.3 供電系統......................................................................................................22
第三章 機器人主體系統狀態及運動軌跡產生...............................................23
3.1 概論..............................................................................................................23
3.2 座標系統......................................................................................................24
3.3 正向運動學..................................................................................................26
3.4 重心位置計算..............................................................................................27
第四章 機器人運動控制...................................................................................30
4.1 概論..............................................................................................................30
4.2 機器人監控介面..........................................................................................31
4.3 多晶片控制架構..........................................................................................32
4.4 關節定位控制器之設計..............................................................................33
4.5 關節定位控制器實驗結果..........................................................................36
4.6 震盪消除控制器之設計..............................................................................37
第五章 實驗結果分析與探討...........................................................................40
5.1 概論..............................................................................................................40
5.2 前進動作之重心模擬..................................................................................40
5.3 前進動作不使用震盪消除..........................................................................44
5.4 前進動作使用震盪消除..............................................................................52
第六章 總結.......................................................................................................59
6.1 困難之處與解決方法..................................................................................59
6.2 改進方向......................................................................................................61
6.3 未來展望......................................................................................................62
參考資料.............................................................................................................63
附錄.....................................................................................................................65
圖目錄
圖1.1 Honda-ASIMO機器人..............................................................................1
圖1.2 Toyota-Partner機器人...............................................................................1
圖1.3 HAL輔具機器人.......................................................................................2
圖1.4戰場搬運支援機器人................................................................................2
圖1.5 HUBO2.......................................................................................................3
圖1.6 Johnnie.......................................................................................................3
圖1.7 HRP3與HRP4C........................................................................................3
圖1.8 WABIAN-2R..............................................................................................5
圖2.1 雙足機器人系統.......................................................................................5
圖2.2 系統架構圖...............................................................................................6
圖2.3 雙足機器人機構設計...............................................................................6
圖2.4 萬向接頭...................................................................................................7
圖2.5 萬向關節...................................................................................................8
圖2.6 腰部分解圖...............................................................................................8
圖2.7 腰部組合圖...............................................................................................8
圖2.8 大腿分解圖...............................................................................................9
圖2.9 大腿組合圖...............................................................................................9
圖2.10 小腿分解圖.............................................................................................9
圖2.11 小腿組合圖.............................................................................................9
圖2.12 腳踝分解圖.............................................................................................9
圖2.13 腳踝組合圖.............................................................................................9
圖2.14 DC大扭力減速馬達(IG-52GM)..........................................................10
圖2.15 S3M高扭矩時規皮帶與皮帶輪...........................................................11
圖2.16 3/8吋鏈條與鏈輪..................................................................................11
圖2.17絕對值型旋轉編碼器............................................................................12
圖2.18日製碳膜密封可變電阻(電位計)....................................................12
圖2.19雙軸陀螺儀............................................................................................13
圖2.20 IDG1215內部結構圖............................................................................13
圖2.21電路架構................................................................................................14
圖2.22類比/數位轉換電路架構.......................................................................15
圖2.23 MAX197內部架構圖...........................................................................16
圖2.24 C8051F120DK開發板..........................................................................17
圖2.25 C8051F120功能方塊圖........................................................................17
圖2.26 IXDP610 PWM產生器.........................................................................18
圖2.27 PWM訊號示意圖.................................................................................19
圖2.28 IR2111半橋式驅動器...........................................................................19
圖2.29 IR2111內部架構...................................................................................20
圖2.30 控制器電源架構...................................................................................20
圖2.31 馬達驅動器電源架構...........................................................................21
圖2.32 LM2576-5交換式穩壓器.....................................................................21
圖2.33線性穩壓器............................................................................................21
圖2.34 12V-7.2AH鉛酸蓄電池........................................................................22
圖3.1 雙足機器人.............................................................................................23
圖3.2 機器人參數定義(正面)..........................................................................24
圖3.3 機器人角度定義.....................................................................................25
圖3.4重心側視圖..............................................................................................28
圖3.5重心正視圖..............................................................................................28
圖3.6重心俯視圖..............................................................................................29
圖3.7重心斜視圖..............................................................................................29
圖4.1 機器人運動控制架構.............................................................................30
圖4.2 電腦端BCB監控介面...........................................................................31
圖4.3 多晶片控制架構.....................................................................................32
圖4.4 (a)輸入變數之歸屬函數 (b)輸出變數之歸屬函數..............................33
圖4.5 關節定位控制器之輸入、輸出歸屬函數.............................................35
圖4.6 關節定位追蹤軌跡.................................................................................36
圖4.7 腳踝機構示意圖與系統示意圖.............................................................37
圖4.8 震盪消除控制器之輸入、輸出歸屬函數.............................................38
圖5.1 重心運動軌跡.........................................................................................40
圖5.2 前進動作模擬.........................................................................................44
圖5.3前進動作..................................................................................................45
圖5.4 各關節運動軌跡與馬達出力.................................................................50
圖5.5 機身晃動訊號.........................................................................................51
圖5.6 震盪消除控制器輸出.............................................................................51
圖5.7 使用震盪消除-各關節運動軌跡與馬達出力.......................................57
圖5.8使用震盪消除-機身晃動訊號................................................................57
圖5.9使用震盪消除-控制器輸出....................................................................58
圖6.1 鏈條驅動系統.........................................................................................60
表目錄
表 3.1 機器人實際尺寸參數.............................................................................25
表3.2 各質量點重量.........................................................................................27
表3.3 各關節角度.............................................................................................27
表4.1平衡控制器模糊規則表..........................................................................35
[1] Sardain P. and Bessonnet G., “Forces Acting on a Biped Robot. Center of Ressure-Zero Moment Point”, IEEE Trans. Syst. Man Cybern, A, syst. and humans ,Vol. 34, Issue 5, pp.630-637,Sept. 2004
[2] Kim Y. D., Lee B. J, Ryu J. H. and Kim J. H., “Landing Force Control for Humanoid Robot by Time-Domain Passivity Approach”, IEEE Trans. Robot. ,Vol. 23, No. 6, pp.1294-1301, Dec. 2007
[3] Motoi N., Ikebe M. and Ohnishi K., “Real-Time Gait Planning for Pushing Motion of Humanoid Robot”, IEEE Trans. Ind. Informa. ,Vol. 3, No. 2, pp.154-163, May. 2007
[4] Loffler K., Gienger M., Pfeiffer F. and Ulbrich H., “Sensor and Control Concept of a Biped Robot”, IEEE Trans. Ind. Electron. ,Vol. 3, No. 2, pp.972-980, Oct. 2004
[5] Huang Q. and Nakamura Y., “Sensor Reflex Control for Humanoid Walking”, IEEE Trans. Robot. ,Vol. 21, No. 5, pp.977-984, Oct. 2005
[6] Sardain P. and Bessonnet G., “Zero Moment Point-Measurements From a Human Walker Wearing Robot Feet as Shoes”, IEEE Trans. Syst. Man Cybern, A, ,Vol. 34, No. 5, pp.638-648,Sept. 2004
[7] Honda。2011年5月3日,
http://www.honda.co.jp/
[8] Toyota。2011年5月3日,
http://www.toyota.co.jp/
[9] HAL。2011年5月3日,
http://www.cyberdyne.jp/english/robotsuithal/
[10] BEAR。2011年5月3日,
http://www.vecna.com/robotics/
[11] 智慧型系統控制整合實驗室。2011年4月10日,
http://isci.cn.nctu.edu.tw/
[12] 智慧型機器人導航與控制實驗室。2011年4月10日,
http://navigation-control.blogspot.com/
[13] 智慧型控制與影像處理實驗室。2011年4月10日,
http://140.115.70.172/xoops/
[14] Hubo2。2011年5月5日,
http://hubolab.kaist.ac.kr/
[15] HRP robot。2011年5月5日,
http://www.aist.go.jp/
[16] Wabian-2R。2011年5月5日,
http://www.takanishi.mech.waseda.ac.jp/
[17] Azmi A.M., Amirfaiz W., Faizura. W., Elamvazuthi. I. and Begam. M., “Design and kinematic analysis of biped robot”, International Conference on Intelligent and Advanced Systems, june. 2010
[18] Phuong N.T., Dae W.K., Hak K.K. and Sang B.K.,“An optimal control method for biped robot with stable walking gait”, IEEE-RAS 8th International Conference on Humanoid Robots, pp.211-218, Dec. 2008
[19] Youngjin C., Bum J. Y. and Sang R.O.,“On the stability of indirect ZMP controller for biped robot systems”,IEEE/RSJ International Conference on Intelligent Robots and Systems,Vol. 2, pp.1966-1971, Oct. 2004
[20] Braun D.J. and Goldfarb M., “A Control Approach for Actuated Dynamic Walking in Biped Robots”, IEEE Trans. Robot. ,Vol. 25, No 6, pp.1292-1303,Dec. 2009
[21] Erbatur K. and Kurt O., "Natural ZMP Trajectories for Biped Robot Reference Generation", IEEE Trans. Ind. Electron ,Vol. 56, No 3, pp.835-845,Mar. 2009
[22] Morris B. and Grizzle J.W., “Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots”, IEEE Trans. Autom. Control, Vol 54, Issue 8, pp.1751-1764,Aug. 2009
[23] Motoi N., Motoi N., Suzuki T. and Ohnishi K., “A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulum Mode”, IEEE Trans. Ind. Electron ,Vol 56., No 1, Issue 1, pp.54-61,Jan. 2009
[24] 陳威宇撰「兩輪機器人自我平衡控制之設計與實現」,清雲科技大學電子工程研究所,碩士論文,2004年 (邱智煇指導) 。
[25] 鄭鈞元撰「兩輪自我平衡機器人之平衡控制」中央大學電機工程研究所,碩士論文,2003年(王文俊指導)。
[26] 王禎祥撰「兩輪自我平衡機器人之前後行走控制」中央大學電機工程研究,碩士論文,2003 年(王文俊指導)。
[27] 王文俊,認識Fuzzy,全華科技圖書,民國九十年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top