跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉昭佑
研究生(外文):Zhao-You Liu
論文名稱:MIMO設計於IEEE802.11e無線網路效用最大化
論文名稱(外文):A MIMO design for IEEE 802.11e network with utility maximization
指導教授:涂世雄涂世雄引用關係
指導教授(外文):Shih-Hsiung Twu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:45
中文關鍵詞:多輸入多輸出IEEE802.11e
外文關鍵詞:IEEE802.11eMIMO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們利用多個空間信道的MIMO技術,透過估計網絡狀態,動態調整退避的基礎上,提出碰撞緩解增強了IEEE802.11e的增強型分佈式協調功能(EDCF)。我們利用這種多重空間通道緩解碰撞增強在 IEEE802.11e的EDCF。該計劃的核心思想,即所謂 MIMO為基礎的EDCF(MEDCF)。
我們首先要建立IEEE802.11e模型的物理層和MAC層包括所有細節的MEDCF計劃。其次,制定一個優化空間信道的共享程序,探空框架和退避的大小,然後,我們改變了探空幀長度對系統的性能,並找出最佳值的探空幀長度,最大限度地提高系統性能方面的防撞和傳輸介質的利用率。最後,我們模擬MEDCF計劃在單跳網絡。
在這篇論文中,我們研究的貢獻如下:
1.該計劃的基礎上優化網路空間信道共享。
2.該計劃進一步降低介質訪問衝突。
3.該計劃中提高了利用率。



In this thesis, we utilize the multiple spatial channels of MIMO technology with a dynamically tuned backoff based on the estimation of the network status to propose collision-mitigation enhancements to the IEEE 802.11e enhanced distributed coordination function (EDCF). We utilize such multiple spatial channels for collision mitigation enhancements to the IEEE 802.11e EDCF. The key idea of the scheme, which is called MIMO based EDCF (MEDCF).
We first have model the built-in IEEE 802.11e physical and MAC layers to include all the details of the MEDCF scheme. Secondly, formulate an optimization spatial channel sharing program that sounding frame and backoff size, and then, we changing the sounding frame length on the system performance, and that finds the optimal value of the sounding frame that maximizes the system performance in terms of collision avoidance and transmission medium utilization. Finally, we present simulation results of the MEDCF scheme over a single-hop network.
In this thesis, the contributions of our research are as follows:
1. The scheme based on optimized online spatial channel sharing.
2. The scheme further reduces medium access collisions.
3. The scheme boosts medium utilization.



Contens
摘要 Ⅰ
Abstract Ⅱ
Acknowledgement Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅵ
Chapter 1 Introduction 1
1.1 Research motivation 1
1.2 The Proposed Schemes 4
1.3 Organization of this thesis 4
Chapter 2 Background 6
2.1 Random address 6
2.1.1 Aloha 6
2.1.2 CSMA A MIMO design for IEEE 802.11e network with utility maximization 8
2.2 Review of IEEE 802.11 MAC 10
2.2.1 Distributed coordination function 10
2.2.2 Point coordination function 13
2.3 Introduction of IEEE 802.11e 14
2.3.1 Enhanced distributed channel access 16
2.3.2 HCF controlled channel access 18
2.4 Introduction of MIMO design for IEEE 802.11e 21

Chapter 3 Our MIMO enhancements to the IEEE 802.11e EDCF mechanism 22
3.1 Simulation model 22
3.2 Optimal spatial channel sharing 25
3.2.1 Optimal sounding frame 25
3.2.2 Optimal backoff size 30
3.3 Simulation results: A single-hop network 32
Chapter 4 Conclusions 35
Reference 36

List of Figures
Fig. 2.1 Pure ALOHA protocol 7
Fig. 2.2 Slotted ALOHA protocol 8
Fig. 2.3 DCF transmission scheme 10
Fig. 2.4 DCF timing chart 12
Fig. 2.5 PCF timing chart 14
Fig. 2.6 IEEE 802.11 protocol layer 15
Fig. 2.7 EDCA model 17
Fig. 2.8 IFS relationship and related terms 18
Fig. 2.9 Beacon interval is cut into several SI in HCCA 19
Fig. 3.1 BEB 30
Fig. 3.2 BEB with EDCI 31
Fig. 3.3 MAC delay for different γ lengths and network loads 33
Fig. 3.4 Channel utilization for different γ lengths and network loads 34
Fig. 3.5 Throughput for different γ lengths and network loads 34

List of Tables
Table I IEEE 802.11n PARAMETER SETTINGS 24

[1] K. Pahlavan and A. H. Levesque, “Wireless data communications,” Proc .IEEE, vol. 82, pp. 1398–1430, Sept. 1994.
[2] A. De Simone and S. Nanda, “Wireless data: Systems, standards, services,” J. Wireless Networks, vol. 1, no. 3, pp. 241–254, Feb. 1996.
[3] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997. P802.11.
[4] L. Kleinrock and F. Tobagi, “Packet switching in radio channels, Part II The hidden terminal problem in carrier sense multiple access and the busy tone solution,” IEEE Trans. Commun., vol. COM-23, no. 12, pp. 1417–1433, Dec. 1975.
[5] H. S. Chhaya and S. Gupta, “Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol,” Wireless Networks, vol. 3, pp. 217–234, 1997.
[6] K. C. Huang and K. C. Chen, “Interference analysis of nonpersistent CSMA with hidden terminals in multicell wireless data networks,” in Proc. IEEE PIMRC, Toronto, Canada, Sept. 1995, pp. 907–911.
[7] Wireless LAN MAC and PHY Specifications Amendment 8: MAC Quality of Service Enhancements, IEEE 802.11e WG, Sep. 2005.
[8] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547, Mar. 2000.
[9] F. Cali, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 785–799, Dec. 2000.
[10] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism,” IEEE J. Sel. Areas Commun., vol. 18, no. 9, pp. 1774–1786, Sep. 2000.
[11] F. Cali, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 785–799, Dec. 2000.
[12] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547, Mar. 2000.
[13] J. S. Kim, E. Serpedin, and D. R. Shin, “Improved particle filtering based estimation of the number of competing stations in IEEE 802.11 networks,” IEEE Signal Process. Lett., vol. 15, pp. 87–90, Dec. 2008.
[14] Y. Kwon, Y. Fang, and H. Latchman, “Novel MAC protocol with fast collision resolution for wireless LANs,” in Proc. IEEE INFOCOM, Apr. 2003, pp. 853–862.
[15] J. Choi and J. Yoo, “EBA: An enhancement of the IEEE 802.11 DCF via distributed reservation,” IEEE Trans. Mobile Comput., vol. 4, no. 4, pp. 378–390, Jul./Aug. 2005.
[16] D. Deng, C. Ke, H. Chen, and Y. Huang, “Contention window optimization for IEEE 802.11 DCF access control,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5129–5135, Dec. 2008.
[17] F. Talucci, M. Gerla, and L. Fratta, “MACA-BI (MACA by invitation)—A receiver oriented access protocol for wireless multihop networks,” in Proc. IEEE Pers., Indoor, Mobile Radio Commun., Sep. 1997, pp. 435–439.
[18] Z. J. Haas and J. Deng, “Dual busy tone multiple access (DBTMA)—A multiple access control scheme for ad hoc networks,” IEEE Trans. Commun., vol. 50, no. 6, pp. 975–985, Jun. 2002.
[19] F. A. Tobagi and L. Kleinrock, “Packet switching in radio channels—Part III: Polling and (dynamic) split-channel reservation multiple access,” IEEE Trans. Commun., vol. COM-24, no. 8, pp. 832–844, Aug. 1976.
[20] S. Gobriel, R. Melhem, and D. Mosse, “BLAM: An energy-aware MAC layer enhancement for wireless adhoc networks,” in Proc. IEEE Wireless Commun. Netw. Conf., Mar. 2005, pp. 1557–1563.
[21] S. Romaszko and C. Blondia, “Neighbour-aware, collision avoidance MAC protocol (NCMac) for mobile ad hoc networks,” in Proc. Int. Symp. Wireless Commun. Syst., Sep. 2006, pp. 322–326.
[22] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput, IEEE P802.11n–D4.0, Mar. 2008.
[23] H. Jin, B. C. Jung, H. Y. Hwang, and D. K. Sung, “A MIMO-based collision mitigation scheme in uplink WLANs,” IEEE Commun. Lett., vol. 12, no. 6, pp. 417–419, Jun. 2008.
[24] M. Park, S. Choi, and S. M. Nettles, “Cross-layer MAC design for wireless networks using MIMO,” in Proc. IEEE Globecom, St. Louis, MO, Nov. 2005, pp. 2870–2874.
[25] K. Sundaresan, R. Sivakumar, M. A. Ingram, and T. Chang, “Medium access control in ad hoc networks with MIMO links: Optimization considerations and algorithms,” IEEE Trans. Mobile Comput., vol. 3, no. 4, pp. 350–365, Oct.–Dec. 2004.
[26] J.-S. Park, A. Nandan, M. Gerla, and H. Lee, “SPACE-MAC: Enabling spatial reuse using MIMO channel-aware MAC,” in Proc. IEEE ICC, Seoul, Korea, May 2005, pp. 3642–3646.
[27] R. Binder; N. Abramson, F. Kuo, A. Okinaka, D. Wax (1975). "ALOHA packet broadcasting - A retrospect" (PDF). Proc. 1975 National Computer Conference. AFIPS Press.
[28] N. Abramson (December 2009). "The ALOHAnet – Surfing for Wireless Data" (PDF). IEEE Communications Magazine 47 (12): 21–25.
[29] Ramos, D. Panigrahi, and S. Dey, “Quality of Service Provisioning in 802.11e Networks: Challenges, Approaches, and Future Directions”, IEEE Network, Vol. 19, pp. 14–20, July 2005.
[30] S. A. Jafar and M. J. Fakhereddin, “Degrees of freedom for the MIMO interference channel,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637–2642, Jul. 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top