跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李政憲
研究生(外文):Zheng-Xian Li
論文名稱:氬銲被覆抗磨材料於低碳鋼磨潤特性研究
論文名稱(外文):Tribology of Low Carbon Steel Cladded by Wear-resistant materials Using Gas Tungsten Arc Welding
指導教授:康淵康淵引用關係張永鵬張永鵬引用關係
指導教授(外文):Yuan KangYeon-Pun Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:微米粉體低碳鋼氬銲鈦合金磨潤學奈米粉體抗磨材料被覆
外文關鍵詞:Low carbon steelTitanium alloyGas Tungsten Arc Welding.Anti-wear materialsTribologyNano PowderMicron PowderCladded surface
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文係將鈦合金與陶瓷抗磨材料,利用惰氣鎢極電弧銲( gas tungsten arc welding ; GTAW )方法被覆於低碳鋼上,以提高基材的耐磨性。然後利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、能量色散X射線光譜儀(EDS)和洛氏(Rocwell Hardness)硬度試驗機,對不同銲接條件的碳化鈦(TiC)被覆層進行顯微組織化學成分與硬度分析,更進一步利用磨耗試驗機探討被覆的抗磨材料磨潤特性。利用惰氣鎢極電弧銲( gas tungsten arc welding ; GTAW )被覆,可使TiC被覆層形成良好的冶金結合,因TiC顆粒均勻的分佈在機板表面形成被覆層。經由實驗證實,主要影響被覆層硬度與耐磨性的銲接因素,為銲接速度與銲接電流。

This paper was coat titanium and ceramic which is anti-wear material using gas tungsten arc welding (GTAW) method on low carbon steel to improve wear resistance of the substrate. Microstructure and surface hardness of the cladding were investigated and measured on samples under different welding conditions. The chemical composition, microstructure and surface morphology of the clad layer were analyzed using optical microscope (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Rockwell hardness testing machine.
Also, using ball on ring tester tribological properties of the anti-wear coating materials was discussed. Using gas tungsten arc welding (GTAW) clad has a homogenous microstructure, a good metallurgical bond with its substrate, and uniform dispersion of TiC particulates in its cladding surface. The experimental results reveal that the key influences on wear resistance performance are welding current and welding speed.


IV
目錄
中文摘要 ....................................................................................................................... I
Abstract........................................................................................................................ II
誌謝 ............................................................................................................................. III
目錄 ............................................................................................................................ IV
表目錄 ....................................................................................................................... VII
圖目錄 ........................................................................................................................ IX
第一章導論 ................................................................................................................... 1
1.1 研究背景 ............................................................................................................. 1
1.2 研究目的 ............................................................................................................. 2
第二章 表面被覆技術與文獻回顧 ............................................................................. 3
2.1 表面被覆技術 ..................................................................................................... 3
2.2 文獻回顧 ............................................................................................................. 4
第三章 實驗材料與設備 ............................................................................................. 8
3.1 實驗材料 ............................................................................................................. 8
3.2 磨耗試驗機 ......................................................................................................... 8
3.3 實驗設備 ........................................................................................................... 10
3.4 分析儀器 ........................................................................................................... 11
第四章 實驗方法與量測分析 ................................................................................... 14
4.1 實驗方法 ........................................................................................................... 14
V
4.2 實驗前置準備 ................................................................................................... 14
4.2.1 被覆製作 ........................................................................................................ 14
4.2.2 被覆層磨潤特性測試 .................................................................................... 15
4.3 田口法之製程優化 ........................................................................................... 18
4.3.1 田口實驗計劃法 ............................................................................................ 18
4.3.2 參數設計 ........................................................................................................ 18
4.3.3 直交表 ............................................................................................................ 19
4.3.4 信號雜訊比 .................................................................................................... 22
4.3.5 田口法規劃實驗 ............................................................................................ 24
第五章實驗結果與討論分析 ..................................................................................... 25
5.1 單因子實驗 ....................................................................................................... 25
5.2 銲接被覆製作之田口回應分析 ....................................................................... 29
5.3 被覆層硬度和磨疤面積之預測與驗證 ........................................................... 33
5.4 被覆層之顯微組織 ........................................................................................... 34
5.5 磨疤表面分析 ................................................................................................... 37
5.6 添加不同比例奈米鑽石粉末被覆層之磨耗分析 ........................................... 39
5.7 添加不同比例氮化硼(BN)粉末被覆層之磨耗分析 ...................................... 44
5.8 應用田口法於TiC 合金被覆材料之製程優化 ............................................... 50
第六章 結論與未來展望 ........................................................................................... 57
6.1 結論 ................................................................................................................... 57
6.2 未來研究方向 ................................................................................................... 58
VI
第七章 參考文獻 ....................................................................................................... 59
學位口試問答記錄 ..................................................................................................... 61
個人資料 ..................................................................................................................... 62
VII
表目錄
表 3-1 AISI 1020 碳鋼之元素成分 .............................................................................. 8
表3-2 304 不銹鋼管之元素成分 ................................................................................. 8
表4-1 AISI52100 軸承鋼成分及機械性質 ............................................................... 16
表4-2 被覆製作的實驗因素與水準 .......................................................................... 20
表4-3 田口實驗之標準L9 直交表 ............................................................................ 21
表4-4TiC 被覆於基材之製作參數分配 ................................................................... 21
表5-1 銲接條件 .......................................................................................................... 29
表5-2TiC 被覆於基材硬度與S/N 比 ....................................................................... 30
表5-3 TiC 被覆於基材磨疤面積與S/N 比 .............................................................. 31
表5-4 被覆層硬度與S/N 平均反應表 ..................................................................... 31
表5-5 被覆層硬度磨疤面積與S/N 平均反應表 ..................................................... 32
表5-6 最佳參數組合硬度預測ηˆi值與實際值比較 ................................................. 33
表5-7 最佳參數組合磨疤面積預測i ηˆ 值與實際值比較 .......................................... 33
表5-8 被覆製作的實驗因素與水準 .......................................................................... 51
表5-9TiC 被覆於基材之製作參數分配 ................................................................... 51
表5-10TiC 合金被覆於基材硬度與S/N 比 ............................................................. 52
表5-11TiC 合金被覆於基材之磨疤面積與S/N 比 ................................................. 53
表5-12TiC 合金被覆層硬度與S/N 平均反應表 ..................................................... 53
表5-13TiC 合金被覆層磨疤面積與S/N 平均反應表 ............................................. 54
VIII
表5-14TiC合金最佳參數組合硬度預測ηˆi值與實際值比較 .................................. 55
表5-15 TiC 合金最佳參數組合磨疤面積預測i ηˆ 值與實際值比較 ........................ 55
IX
圖目錄
圖 3-1 TE53 型多功能磨耗試驗機 .............................................................................. 9
圖3-2 TE53 型磨耗試驗機訊號傳送流程圖 ............................................................ 10
圖3-3 氬銲機 .............................................................................................................. 11
圖3-4 洛氏硬度試驗機 .............................................................................................. 12
圖3-5 表面粗度儀 ....................................................................................................... 13
圖3-6 掃描式電子顯微鏡 .......................................................................................... 13
圖4-1(a)氬銲被覆層縱向金相顯微鏡圖 ................................................................... 15
圖4-1(b)氬銲被覆層橫向金相顯微鏡圖 .................................................................. 15
圖4-2TE53 型多功能磨耗試驗機示意圖 ................................................................. 16
圖4-3pin-on-ring 機制 ............................................................................................... 17
圖4-4 田口法規劃實驗之步驟流程圖 ...................................................................... 24
圖5-1 被覆層表面硬度 .............................................................................................. 26
圖5-2 被覆層磨疤面積與磨疤深度 .......................................................................... 26
圖5-3 摩擦係數與時間之關係圖(銲接條件如表5-1 所示) ................................... 28
圖5-4 被覆層硬度及磨疤面積之S/N 平均反應圖 ................................................. 32
圖5-5 基材與被覆層摩擦係數比較圖 ...................................................................... 34
圖5-6 低碳鋼之微觀結構 .......................................................................................... 34
圖5-7100%TiC 被覆層之SEM 顯微組織照片 ........................................................ 35
圖5-8100%TiC 被覆層之EDS 能量譜與元素含量圖 ............................................ 36
X
圖5-9100%TiC 被覆層磨疤表面之SEM 照片 ........................................................ 38
圖5-10TiC 添加不同比例奈米鑽石粉末被覆層硬度與磨疤面積比較圖 ............. 39
圖5-11TiC 添加1.5%奈米鑽石粉末被覆層之磨疤面積比較圖 ............................ 40
圖5-12TiC 添加1.5%奈米鑽石粉末被覆層之摩擦係數比較圖 ............................ 41
圖5-13TiC 添加1.5%奈米鑽石粉末被覆層之SEM 顯微組織照片 ...................... 42
圖5-14TiC 添加1.5%奈米鑽石粉末被覆層之能量譜與元素含量圖 .................... 42
圖5-15TiC 添加1.5%奈米鑽石粉末被覆層磨損表面之SEM 照片 ...................... 44
圖5-16TiC 添加不同比例氮化硼粉末被覆層硬度與磨疤面積比較圖 ................. 45
圖5-17TiC 添加0.75%氮化硼粉末被覆層之磨疤面積比較圖 .............................. 46
圖5-18TiC 添加0.75%氮化硼粉末被覆層之摩擦係數比較圖 .............................. 47
圖5-19 被覆層金屬複合材料包裹固體潤滑劑示意圖 ........................................... 47
圖5-20 固體潤滑劑潤滑模型 .................................................................................... 47
圖5-21 TiC 添加0.75%氮化硼粉末被覆層之SEM 顯微組織照片 ....................... 48
圖5-22TiC 添加0.75%氮化硼粉末被覆層之能量譜與元素含量圖 ...................... 48
圖5-23TiC 添加0.75%氮化硼粉末被覆層磨損表面之SEM 照片 ........................ 50
圖5-24TiC 合金被覆層硬度及磨疤面積之S/N 平均反應圖 ................................. 54
圖5-25 基材與田口參數組合之被覆層摩擦係數比較 ........................................... 56
[1]G. W. Stachowiak and A. W. Batchelor, Engineering Tribology, 2nd ed: Butterworth-Heinemann, 2001.
[2]N. Axen, and S. Jacobson,“A Model for the Abrasive Wear Resistance of Multiphase Materials,” Wear 174, pp.187-199, 1994.
[3] H. G. Fan, H. L. Tsai, and S. J. Na,“Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding,”International Journal of Heat and Mass Transfer 44, pp.417-428, 2001.
[4] Yucong Wang,1997,“A Study of PVD coatings and die materials for extended die-casting die life”,Surface and coatings Technology,vol.94-95, pp.60~63.
[5] Y. C. Lin, S. W. Wang, K. E. Wu, “The wear behaviour of machine tool guideways clad with W-Ni, W-Co and W-Cu using gas tungsten arc welding,” Surface and Coatings Technology 172, pp. 158-165, 2003.
[6] C.Mitter, F. Holler, F. Ustelb D. Heim, "Application of hard coatings in aluminum die asting soldering, erosion and thermal fatigue behavior", Surface andCoatings Technology,125, pp.233-239, 2000.
[7] G. Xu, M. Kutsuna, Z. Liu, H. Zhang, “Characteristics of Ni-based coating layer formed by laser and plasma cladding processes,” Materials Science and Engineering A417, pp. 63-72, 2006.
[8] L. St-Georges, “Development and characterization of composite Ni-Cr + WC laser cladding,” Wear 263, pp. 562-566, 2007.
[9] S.Guliziaa, M. Z. Jahedia, E. D. Doylebc, " A study of PVD coatings and die materials for extended die casting die life ", Surface and Coatings Technology, 140, pp.200-205,2001.
[10] Y.M. Chong, Q. Ye, Y. Yang, W.J. Zhang, I. Bello, S.T. Lee, "Tribological study of boron nitride films", Diamond & Related Materials ,19,pp.654-660, 2010.
[11] M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, M. P. Dariel, A. Weisheit, R. Galun, B. L. Mordike, “Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel,” Materials Science and Engineering A302, pp.106-114, 2001.
[12] M. Cadens, R. Vijande, H. J. Montes, J. M. Sierra, “Wear behaviour of laser claded and plasma sprayed WC-Co coatings,” Wear 212, pp. 244-253, 1997.
[13] C. Cui, Z. Guo, H. Wang, J. Hu, “In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system,” Journal of Materials Processing Technology 183, pp. 380-385, 2007.
[14] W. Schwarz, H. Warlimont, “A new series of Co-based amorphous alloys and their application as cladding materiaks,” Materials Science and Engineering A226-228, pp. 7098-1101, 1997.
[15] Y. C. Lin, S. W. Wang, K. E. Wu, “The wear behaviour of machine tool guideways clad with W-Ni, W-Co and W-Cu using gas tungsten arc welding,” Surface and Coatings Technology 172, pp. 158-165, 2003.
[16] N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi, A. Cornet, “Dry coatings and ecodesign Part.2-Tribological performances,” Surface & Coatings Technology 204, pp. 197-204, 2009.
[17] M. J. Chaoa, E. J. Liang, “Effect of TiO2-doping on the microstructure and the wear properties of laser-clad nickel-based coatings,” Surface and Coatings Technology 179, pp. 265-271, 2004.
[18] R. L. Sun, D. Z. Yang, L. X. Guo, S. L. Dong, “Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate,” Surface and Coatings Technology 132, pp. 251-255, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top