跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯秀靜
研究生(外文):Shiow-Jing Tang
論文名稱:聚苯胺之合成及其特性研究
論文名稱(外文):Synthesis and characterization of polyaniline
指導教授:邱寬城
指導教授(外文):Kuan-Cheng Chiu
學位類別:博士
校院名稱:中原大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:95
中文關鍵詞:聚苯胺電導率跳躍躍遷苯胺寡聚物導電機制熱活化能合成機制
外文關鍵詞:carrier transportformation mechanismconducting mechanismpolyanilinephenazinehoppingconductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們依序對聚苯胺(PANI)的合成條件與製備過程,及其相關之特性量測與導電機制作了一番詳盡的探討。在第二章中,我們藉由調控氧化劑過硫酸銨(APS),鹽酸(HCl)與苯胺(Aniline, 簡稱AN)這三者之莫耳濃度比例([APS]:[HCl]:[AN])來探討AN聚合之初始條件對後續產物特性的影響。在 [APS]/[AN] = 0.23與[AN] = 0.27 M的前提下,藉由AN與HCl的相對濃度大小提出一個簡易判斷AN聚合機制的架構,並將其分成三種類型:(A) [AN] >> [HCl],(B) [AN] 稍大於[HCl],以及(C) [AN] < [HCl]。當系統初始狀態為(A)類型時,溶液中主要組成為電中性的AN分子,產物為類吩嗪苯胺寡分子(Phenazine-like aniline oligomer, PZAO)。當系統初始狀態為(C)類型時,溶液中主要由苯胺陽離子構成,產物為PANI。 當系統初始狀態屬於(B)類時,則產物同時具有(A)類型與(C)類型的特徵。
在第三章中,我們將鹼性之半氧化半還原態的PANI粉末,在壓力p為250 ~ 10000 psi的條件下壓製成錠。將Au/PANI/Au架構的電性量測樣品置於真空致冷系統中進行暗電導率 σ 隨抽氣時間與溫度變化的實驗。利用拉長指數函數(Stretched exponential function)對σ 隨抽氣時間的變化趨勢作數值擬合(numerical fitting)所得到指數  與衰退時間 來分析水汽由樣品兩側逸出的行為。接著使用一維變程(1 D variable range hopping)跳躍與熱活化 (Arrhenius nearest-neighbor hopping) 模型來分析電導率隨溫度變化趨勢,並探討電荷載子在樣品內之傳輸行為。
在第四章中,根據第二章的實驗結果,我們製備了具有片狀結構的PZAO,奈米粒/片狀結構的PANI/PZAO複合材,以及奈米粒/奈米絲結構的PANI等三種粉末。將此三種材料在剛合成好(As-prepared),去摻雜 (De-doped) 與再摻雜 (Re-doped) 的狀態下壓成錠,並進行一系列變溫的電導率量測。由熱活化,準一維(quasi-1D)與三維變程跳躍(3D variable range hopping)模型來作數值擬合並分析載子在材料內之傳輸機制。剛合成好的與在摻雜後的PANI樣品皆具有較高的電導率σDC 與微弱的變溫趨勢,其活化能EA分別只有4.8 與18 meV,具有較長的局部化長度L,並在費米能階處具有很高的能態密度N(EF)。去摻雜後的PANI樣品具有較大的EA (520 meV)與較小的L與N(EF)。PZAO樣品由於缺乏長的共軛結構,因此σDC 均極低。剛合成好的與再摻雜的樣品EA均很高(510 and 580 meV),去摻雜的樣品 EA更高達870 meV。剛合成好的與再摻雜的PANI/PZAO複合材樣品,在320 K時具有相對較高的σDC 與較低的EA (33 and 41 meV)。去摻雜後的樣品,EA 相對較高(420 meV),並且具有較低的σDC。最後在第五章中作個總結。


Effects from various initial molar ratios of aniline, APS, and HCl ([AN]:[APS]:[HCl]) on the polymerization of aniline were investigated. First, a scheme derived from a molecular point of view was proposed to distinguish the formation mechanisms based on their initial conditions. Then, by choosing a relatively low ratio of [APS]/[AN] = 0.23 at [AN] = 0.27 M, three cases can be categorized according to this scheme: (A) [AN] &gt;&gt; [HCl], (B) [AN] slightly larger than [HCl], and (C) [AN] &lt; [HCl]. For case (A), the initial solution has a richness of neutral anilines. Both the doped and dedoped samples are confirmed to have features of phenazine-like oligomers. For case (C), neutral anilines are almost protonated to become anilinium cations. The final products possess features of polyaniline. For case (B), the samples possess both features from cases (A) and (C). Finally, the formation mechanisms for polymerization of aniline were discussed.
Polyaniline (PANI) films consisted of emeraldine base (EB) powders made by various pressing pressures p and sandwiched by two Au-electrodes are characterized by current-voltage (I-V) measurements. A linear behavior in I-V curves is observed and from which the dark electrical conductivity  of the sandwiched Au/PANI/Au sample is deduced. The sample is then put into a cryostat to study the variations in  upon dynamic vacuum-pumping and under cooling processes. During dynamic vacuum-pumping process, H2O molecules inside the film are gradually removed from the lateral edge, thus,  decreases. The temporal decay in (t) of these dedoped PANI films can be fitted via a stretched exponential function and from which the decay exponent  and decay time constant  associated with the diffusion of H2O molecules out of the as-pressed film can be obtained. The relations for  and  with respect to p are discussed, respectively. Next, by measuring the temperature dependence of (T) of these dedoped PANI films, the charge-carriers transport is discussed in terms of 1D variable-range-hopping model and Arrhenius activated-barrier-crossing model, respectively. Finally, the physical significance from the fitting results is discussed.
Electrical characterization of pelletized samples made from polyaniline (PANI), phenazine-like aniline oligomer (PZAO) and PANI/PZAO composite together with the effects from de-doping and re-doping were studied. A numerical fit by using Arrhenius nearest-neighbor hopping, quasi-1D and 3D variable-range hopping models was applied. For samples composed of PANI nanogranules/nanofibers obtained at high [HCl] = 1.0 M, both as-prepared and re-doped samples possess high σDC with a weak T-dependence due to the dopants effects; and small EA (4.8 and 18 meV) for nearest-neighbor hopping and large L and N(EF) for quasi-1D and 3D variable-range hopping were obtained. After de-doping, low σDC with a strong T-dependence was obtained and large EA (520 meV) and small L and N(EF) were resulted. For samples composed of planar PZAO structure obtained at [HCl] = 0.10 M, σDC becomes very small. Both as-prepared and re-doped samples possess high EA (510 and 580 meV), and after de-doping EA increases (870 meV). For samples composed of PANI/PZAO composites obtained at [HCl] = 0.20 M, both as-prepared and re-doped samples possess relatively high σDC at 320 K and low EA (33 and 41 meV); and after de-doping, EA increases again (420 meV).



Table of Contents
摘要 ……………………………………………………………………………………………I
Abstract ……………………………………………………………………………………III
致謝 ……………………………………………………………………………………V
Table of Contents …………………………………………………………………………………VII
List of Figures …………………………………………………………………………………IX
List of Tables ……………………………………………………………………………………XII

Chapter 1 Introduction …………………………………………………………………………1
Chapter 2 Polymerization of aniline under various concentrations of APS and HCl …………7
2.1 Introduction …………………………………………………7
2.2 Experimental procedure ………………………………………11
2.2.1 Materials ………………………………………………………………….11
2.2.2 Synthesis …………………………………………………11
2.2.3 Characterization …………………………………………11
2.3 Results and discussion ………………………………12
2.3.1 The pH-falling and temperature-variation profiles .........................12
2.3.2 FTIR spectra ...............17
2.3.3 UV-Vis results ...........20
2.3.4 GPC and TOF-MS results ...........23
2.3.5 EA results ............25
2.3.6 SEM results ..............27
2.3.7 XRD Results …………………………………………29
2.3.8 Formation mechanism-revised and electrical characterization ...............29
2.4 Conclusions …………………………………………………………………32
Chapter 3 Effects of dynamic vacuum-pumping and temperature dependence of dark electrical conductivity in polyaniline films made by various pressing pressures .........38
3.1 Introduction ………………………………………………38
3.2 Experimental details ………………………………………………39
3.3 Results and discussion ………………………………………42
3.4 Summary …………………………………………………………………55
Chapter 4 Electrical characterization of polyaniline and polyaniline/phenazine-like aniline oligomer composites ........58
4.1 Introduction ………………………………………………………58
4.2 Experimental details ………………………………………60
4.2.1 Powder synthesis and sample fabrication..60
4.2.2 Characterization ………………………………………………………60
4.3 Results and discussion…………………………………62
4.3.1 SEM results…………………………………………………………62
4.3.2 XRD results…………………………………………………………………62 4.3.3 DC characteristics………………………………………………………66
4.4 Conclusions……………………………………………………………74
Chapter 5 Summary......................79
Biographical Sketch……………………………………………………82

List of Figures
Fig. 1.1. Molecular structures of some common conducting polymers. …………………………2

Fig. 2.1. Various forms of PANI emeraldine state: (a) the emeraldine base (EB), the emeraldine salt (ES) (b) with separated polarons and (c) with bipolaron. …………8

Fig. 2.2. (a) Phenazine, (b) phenazine-like aniline-trimer, (c,d) the possible phenazine-like and para-coupled structures of aniline-oligomers, and (e) oxygen-containing aniline-oligomer. .........9

Fig. 2.3. Variations of (a) the pH and (b,c) the temperature versus reaction time for various ratios of [AN] : [APS] in pure water. ........13

Fig. 2.4. Variations of (a) the pH and (b,c) the temperature versus reaction time for various [HCl] (with [APS]/[AN] = 0.23 at [AN] = 0.27 M). Case (A) [AN] &gt;&gt; [HCl], case (B) [AN] &gt; [HCl], and case (C) [AN] &lt; [HCl]. The inset in (c) shows the temperature variations for [AN] = 0.13 M and 0.27 M with [HCl] = 0.20 M and [APS]/[AN] = 0.23. …………………………………………15

Fig. 2.5. Schematic diagram of initial conditions for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. ………………………………. 16

Fig. 2.6. FTIR spectra for (a) doped and (b) dedoped samples obtained with various [HCl] for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. ………………18

Fig. 2.7. FTIR spectra for doped samples obtained with various [APS]/[AN] at [AN] = 0.27 M in pure water. …………………………….......21

Fig. 2.8. UV-Vis spectra for (a) doped and (b) dedoped samples obtained with various [HCl] for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. …………………………………22

Fig. 2.9. GPC and TOF-MS results of dedoped samples obtained with various [HCl] for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. The inset shows a typical mass spectroscopy for case (A). ……………………....24

Fig. 2.10. SEM images of doped samples obtained for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. ……………………………28

Fig. 2.11. XRD spectra for (a) doped and (b) dedoped samples obtained for cases: (A) [AN] &gt;&gt; [HCl], (B) [AN] &gt; [HCl], and (C) [AN] &lt; [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. ……30

Fig. 3.1. One of the typical linear I-V curves measured for dedoped PANI thick films. ......41

Fig. 3.2. Decay in (t) of PANI thick film pressed at p = 500 psi. Three cases are defined: at the time of bias applied, at the time of pump started, and nearly in steady state; a waiting period tA and a pumping period tP together with the corresponding values of A, P, and S are also indicated. ………………………………………………………43

Fig. 3.3. Variations of averaged values of A (solid circles), P (open circles) and S (solid squares) of dedoped PANI thick films pressed at various p. …………………………………44

Fig. 3.4. One of the typical (t) curves during dynamic vacuum-pumping. Two fitting curves are shown: the solid curve fitted by a stretched exponential function almost follows the experimental data; but the dotted curve fitted by a single exponential decay function is relatively poor. ………47

Fig. 3.5. Fitting parameters  and  obtained for dedoped PANI thick films with respect to various p. ……………………………………49

Fig. 3.6. A plot of S versus p exhibits a critical pc-effect. The solid squares represent data obtained for long enough tP and the open circles for tA&P = 24 h only. …………………………………50

Fig. 3.7. (a) A 1D VRH plot of  versus 1000/T1/2 for one set of data shown in the inset. The inset shows two sets of data measured successively in decreasing-T mode for a dedoped PANI thick film pressed at p = 2.0×103 psi. (b) The relation of T0 versus p for all dedoped PANI samples. The average T0 represented by a solid line for samples with long enough tP (solid squares) is slightly larger than the average T0 by a dashed line for samples with tA&P = 24 h only (open circles). ............51

Fig. 3.8. (a) An Arrhenius plot of  versus 1000/T for one set of data shown in the inset of Fig. 7(a). (b) The relation of EA versus p for all dedoped PANI samples. The average EA represented by a solid line for samples with long enough tP (solid squares) is slightly larger than the average EA by a dashed line for samples with tA&P = 24 h only (open circles). ……………………52

Fig. 4.1. (a) The scheme of pelletized sandwiched sample and (b) one of the typical linear I-V curves of samples. ..........63

Fig. 4.2. SEM images of powders obtained from various conditions. (a) [HCl] = 0.10 M for τ = 3 h, (b) [HCl] = 0.20 M for τ = 3 h, (c) [HCl] = 0.20 M for τ = 6 h and (d) [HCl] = 1.0 M for τ = 3 h............64
Fig. 4.3. XRD spectra for powders obtained from various conditions. ..................65

Fig. 4.4. The temperature dependence of σDC of all powders obtained from (a) [HCl] = 0.10 M for τ = 3 h and (b) [HCl] = 0.20 M for τ = 3 and 6 h. The symbols are defined in Table 4.1, in which the solid, semi-filled and open symbols stand for as-prepared, de-doped and re-doped state, respectively.....................67

Fig. 4.5. The Arrhenius plots of DC versus 1000/T for (a) 1.0-As-3, 1.0-Re-3, 0.2-As-6 and 0.2-Re-6 samples and (b) 1.0-De-3, 0.2-De-3, 0.1-As-3, 0.1-De-3 and 0.1-Re-3 samples. .....69

Fig. 4.6. The quasi-1D VRH plots of DC versus 1000/T1/2 for for (a) 1.0-As-3, 1.0-Re-3, 0.2-As-6 and 0.2-Re-6 samples and (b) 1.0-De-3, 0.2-De-3, 0.1-As-3, 0.1-De-3 and 0.1-Re-3 samples. .......70

Fig. 4.7. The 3D VRH plots of DC versus 1000/T1/4 for for (a) 1.0-As-3, 1.0-Re-3, 0.2-As-6 and 0.2-Re-6 samples and (b) 1.0-De-3, 0.2-De-3, 0.1-As-3, 0.1-De-3 and 0.1-Re-3 samples. ....71


List of Tables
Table 2.1. EA results of doped and dedoped samples obtained with various [HCl] with [APS]/[AN] = 0.23 at [AN] = 0.27 M. ........ 26

Table 3.1. Comparison of the pertinent experimental data (ΔtA, ΔtP, A, P and S) and numerical fitting results (τ, β, δ and R2) for dynamic vacuum-pumping effect on (t) of dedoped PANI thick films. The pressing pressure p is indicated by the first number of sample number. ………………46

Table 4.1. Symbols for all powders and their corresponding synthesis conditions. .................... 61

Table 4.2. Calculated parameters using the thermal activation, quasi-1D and 3D VRH models and the coefficient of determination r2of all samples. ..........................73



Chapter 1
References
[1]Moliton, A. & Hiorns, R. C. Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53, 1397-1412 (2004).
[2]Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Met. 125, 23-42 (2002).
[3]Chiang, J. C. & MacDiarmid, A. G. ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193-205 (1986).
[4]Hadziioannou, G. & van Hutten, P. F., ed. Semiconducting Polymers: Chemistry, Physics and Engineering. Weinheim: Wiley-VCH (2000).
[5]Hsieh, B. R. & Wei, Y. ed. Semiconducting Polymers: Applications, Properties, and Synthesis. North Carolina: Oxford Univ. Press (1999).
[6]Illing, G., Hellgardt, K., Wakeman, R. J. & Jungbauer, A. Preparation and characterisation of polyaniline based membranes for gas separation. J. Membrane Sci. 184, 69-78 (2001).
[7]Treptow, F., Jungbauer, A. & Hellgardt, K. Halide diffusion in polyaniline membranes. J. Membrane Sci. 270, 115-122 (2006).
[8]Fahlman, M., Jasty, S. & Epstein, A. J. Corrosion protection of iron-steel by emeraldine base polyaniline: An X-ray photoelectron spectroscopy study. Synth. Met. 85, 1323-1326 (1997).
[9]Yang, Y & Heeger, A. J. Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Appl. Phys. Lett. 64, 1245-1247 (1994).
[10]Chert, S. A., Chuang, K.R., Chao, C. I. & Lee, H. T. White-light emission from electroluminescence diode with polyaniline as the emitting layer. Synth. Met. 82, 207-210 (1996).
[11]Guay, D., Stewart-Ornstein, J., Zhang, X. & Hitchcock A. P. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission x-ray microscopy. Anal. Chem. 77, 3479-3487, (2005).
[12]Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A. & Travas-Sejdic, J. Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules 41, 3125-3135 (2008).
[13]Stejskal, J., Sapurina, I. & Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1420-1481 (2010).
[14]Trchova, M., Sedenkova, I., Konyushenko, E. N., Stejskal, J., Holler, P. & Ciric-Marjanovic, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 110, 9461-9468 (2006).
[15]Sapurina, I. & Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 57, 1295-1325 (2008).
[16]Stejskal, J., Sapurina, I., Trchova, M. & Konyushenko, E. N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41, 3530-3536 (2008).
[17]Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P. & Travas-Sejdic, J. Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules 43, 662-670 (2010).
[18]Konyushenko, E. N., Trchova, M., Stejskal, J. & Sapurina, I. The role of acidity profile in the nanotubular growth of polyaniline. Chem. Pap. 64, 56-64 (2010).
[19]Rubinger, C. P. L., Costa, L. C., Faez, R., Martins, C. R. & Rubinger, R.M. Hopping conduction on PAni/PSS blends. Synth. Met. 159, 523–527 (2009).
[20]Mzenda, V. M., Goodman, S. A. & Auret, F. D. Conduction models in polyaniline, the effect of temperature on the current–voltage properties of polyaniline over the temperature range 30 < T(K) < 300. Synth. Met. 127, 285–289 (2002).
[21]Upadhyay, P. K. & Ahmad, A. Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polym. Sci. 28, 191−197 (2010).
[22]Singh, R., Arora, V., Tandon, R. P., Chandra, S. & Mansingh, A. Charge transport and structural morphology of HCl-doped polyaniline. J. Mater. Sci. 33, 2067-2072 (1998).
[23]Mott, N. F. & David, E. A. Electronic Processes in Non-Crystalline Materials: Clarendon Press, Oxford (1979).
[24]Gmati, F., Fattoum, A., Bohli, N., Dhaoui, W. & Mohamed, A. B. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids. J. Phys.: Condens. Matter. 19, 326203 (2007).
[25]Cost, L.C. & Henry, F. DC electrical conductivity of carbon black polymer composites at low temperatures. J. Non-Crystal. Solids. 357, 1741–1744 (2011).
[26]Jung, J. H., Kim, B. H., Moon, B. W., Joo, J., Chang, S. H. & Ryu, K. S. Charge transport of lithium-salt-doped polyaniline. Phys. Rev. B, 64, 035101 (2001).
[27]Jeong, C. K., Jung, J. H., Kim, B. H., Lee, S. Y., Lee, D. E., Jang, S. H., Ryu, K. S. & Joo., J. Electrical, magnetic, and structural properties of lithium salt doped polyaniline. Synth. Met. 117, 99-103 (2001).

Chapter 2
References
[1]Moliton, A. & Hiorns, R. C. Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53, 1397-1412 (2004).
[2]Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Met. 125, 23-42 (2002).
[3]Chiang, J. C. & MacDiarmid, A. G. ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193-205 (1986).
[4]Stejskal, J., Kratochvil, P. & Jenkins, A. D. The formation of polyaniline and the nature of its structures. Polymer 37, 367-369 (1996).
[5]Gospodinova, N., Terlemezyan, L., Mokreva, P. & Kossev, K. On the mechanism of oxidative polymerization of aniline. Polymer 34, 2434-2437 (1993).
[6]Gospodinova, N., Mokreva, P. & Terlemezyan, L. Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer 34, 2438-2439 (1993).
[7]Gospodinova, N. & Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog. Polym. Sci. 23, 1443-1484 (1998).
[8]Tzou, K. & Gregory, R. V. Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synth. Met. 47, 267-277 (1992).
[9]Ciric-Marjanovic, G., Trchova, M., & Stejskal, J. Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. Int. J. Quantum. Chem. 108, 318-333 (2008).
[10]Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A. & Travas-Sejdic, J. Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules 41, 3125-3135 (2008).
[11]Stejskal, J., Sapurina, I. & Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1410-1481 (2010).
[12]Trchova, M., Sedenkova, I., Konyushenko, E. N., Stejskal, J., Holler, P. & Ciric-Marjanovic, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 110, 9461-9468 (2006).
[13]Sapurina, I. & Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 57, 1295-1325 (2008).
[14]Stejskal, J., Sapurina, I., Trchova, M. & Konyushenko, E. N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41, 3530-3536 (2008).
[15]Huang, Y. F. & Lin, C. W. Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer 50, 775-782 (2009).
[16]Venancio, E. C., Wang, P. C. & MacDiarmid, A. G. The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synth. Met. 156, 357-369 (2006).
[17]Zhang, L., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A. & Travas-Sejdic, J. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 41, 8877-8884 (2008).
[18]Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P. & Travas-Sejdic, J. Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules 43, 662-670 (2010).
[19]Ding, H., Shen, J., Wan, M. & Chen, Z. Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromol. Chem. Phys. 209, 864-871 (2008).
[20]Konyushenko, E. N., Trchova, M., Stejskal, J. & Sapurina, I. The role of acidity profile in the nanotunular growth of polyaniline. Chem. Pap. 64, 56-64 (2010).
[21]Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A. & Travas-Sejdic, J. Morphological evolution of self-assembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chem. Mater. 21, 954-962 (2009).
[22]Li, G., Pang, S., Xie, G., Wang, Z., Peng, H. & Zhang, Z. Synthesis of radially aligned polyaniline dendrites. Polymer 47, 1456-1549 (2006).
[23]Li, G., Zhang, C., Li, Y., Peng, H. & Chen, K. Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer 51, 1934-1939 (2010).
[24]Ding, Z., Currier, R. P., Zhao, Y. & Yang, D. Self-assembled polyaniline nanotubes with rectangular cross-sections. Macromol. Chem. Phys. 210, 1600-1606 (2009).
[25]Wang, J., Wang, J., Yang, Z., Wang, Z., Zhang, F. & Wang, S. A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. React. Funct. Polym. 68, 1435-1440 (2008).
[26]Pan, L., Pu, L., Shi, Y., Sun, T., Zhang, R. & Zheng, Y. Hydrothermal synthesis of polyaniline mesostructures. Adv. Funct. Mater. 16, 1279-1288 (2006).
[27]Ohira, M., Sakai, T., Takeuchi, M., Kobayashi, Y. & Tsuji, M. Raman and infrared spectra of polyaniline. Synth. Met. 18, 347-352 (1987).
[28]Shao, L., Qiu, J. H., Feng, H. X., Liu, M. Z., Zhang, G. H., An, J. B., Gao, C. M. & Liu, H. L. Structural investigation of lignosulfonate doped polyaniline. Synth. Met. 159, 1761-1766 (2009).
[29]Komura, T., Ishihara, M., Yamaguchi, T. & Takahashi, K. Charge-transporting properties of electropolymerized phenosafranin in aqueous media. J. Electroanal. Chem. 493, 84-92 (2000).
[30]Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E. & Ferraris, J. P. Oligoaniline intermediates in the aniline-peroxydisulfate system. Synth. Met. 159, 445-455 (2009).
[31]Bailey, G. W. & Karickhoff, S. W. An ultraviolet spectroscopic method for monitoring surface acidity of clay minerals under varying water content. Clays and Clay Minerals 21, 471-477 (1973).
[32]Zhang, W. J., Feng, J., MacDiarmid, A. G. & Epstein, A. J. Synthesis of oligomeric anilines. Synth. Met. 84, 119-120 (1997).
[33]Hung, J., Virji, S., Weiller, B. H. & Kaner, R. B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 125, 314-315 (2003).
[34]Xia, Y., Wiesinger, J. M., MacDiarmid, A. G. & Epstein, A. J. Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem. Mater. 7, 443-445 (1995).
[35]Polk, B. J., Potje-Kamloth, K., Josowicz, M. & Janata, J. Role of protonic and charge transfer doping in solid-state polyaniline. J. Phys. Chem. B 106, 11457-11462 (2002).
[36]Kulszewicz-Bajer, I., Rozalska, I. & Kurylek, M. Synthesis and spectroscopic properties of aniline tetramers. New. J. Chem. 28, 669-675 (2004).
[37]Long, S. M., Brenneman, K. R., Saprigin, A., Kohlman, R. S., Epstein, A. J., Angelopoulos, M., Buchwalter, S. L., Rossi, A., Zheng, W. & MacDiarmid, A. G. Aggregation and interchain “self” doping in emeraldine base. Synth. Met. 84, 809-810 (1997).
[38]Hammond, R. B., Roberts, K. J., Smith, E. D. L. & Docherty, R. Application of a computational systematic search strategy to study polymorphism in phenazine and perylene. J. Phys. Chem. B 103, 7762-7770 (1999).
[39]Nechtschein, M., Santier, C., Travers, J. P., Chroboczek, J., Alix, A. & Ripert, M. Water effects in polyaniline: NMR and transport properties. Synth. Met. 18, 311-316 (1987).
[40]Tang, S. J., Lin, S. M., Chiu, K. C., Wu, Y. Y. & Yeh, J. M. Effects of dynamic vacuum- pumping and temperature dependence of dark electrical conductivity in polyaniline films made by various pressing pressures. J. Phys. D: Appl. Phys. 41, 125401 (2008).
[41]Kriz, J., Starovoytova, L., Trchova, M., Konyushenko, E. N. & Stejskal, J. NMR investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline. J. Phys. Chem. B 113, 6666-6673 (2009).
[42]Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X. & MacDiarmid, A. G. X-ray structure of polyaniline. Macromolecules 24, 779-789 (1991).
[43]Kahol, P. K., Pinto, N. J., Berndtsson, E. J. & McCormick, B. J. Electron localization effects on the conducting state in polyaniline. J. Phys. Condens. Matter. 6, 5631-5638 (1994).
[44]Wei, Y., Hariharan, R. & Patel, S. A. Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules 23, 758-764 (1990).
[45]Chen, L., Sun, L. J., Luan, F., Liang, Y., Li, Y. & Liu, X. X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742-3747 (2010).
[46]Yoshikawa, H., Hino, T. & Kuramoto, N. Effect of temperature and moisture on electrical conductivity in polyaniline/polyurethane (PANI/PU) blends. Synth. Met. 156, 1187–1193 (2006).
[47]Cristovan, F. H., Lemos, S. G. & Pereira, E. C. Systematic evaluation of the preparation of conducting PANI/ABS blends. J. Appl. Polym. Sci. 116, 825–831 (2010).

Chapter 3
References
[1]Hadziioannou, G.. & van Hutten, P. F., ed. Semiconducting Polymers: Chemistry, Physics and Engineering. Weinheim: Wiley-VCH (2000).
[2]Hsieh, B. R. & Wei, Y. ed. Semiconducting Polymers: Applications, Properties, and Synthesis. North Carolina: Oxford Univ. Press (1999).
[3]Illing, G., Hellgardt, K., Wakeman, R. J. & Jungbauer, A. Preparation and characterisation of polyaniline based membranes for gas separation. J. Membrane Sci. 184, 69-78 (2001).
[4]Treptow, F., Jungbauer, A. & Hellgardt, K. Halide diffusion in polyaniline membranes. J. Membrane Sci. 270, 115-122 (2006).
[5]Svetlicic, V., Schmidt, A. J. & Miller, L. L. Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors. Chem. Mater. 10, 3305-3307 (1998).
[6]Reemts, J., Parisi, J. & Schlettwein, D. Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap. Thin Solid Films 466, 320-325 (2004).
[7]Pandey, S. S., Ram, M. K., Srivastava, V. K. & Malhotra, B. D. Electrical properties of metal (indium)/polyaniline Schottky devices. J. Appl. Polymer Sci. 65, 2745-2748, (1997).
[8]Bianchi, R. F., da Cunha, H. N., Faria, R. M., Leal Ferreira, G. F. & Mariz, G. Neto. J. Electrical studies on the doping dependence and electrode effect of metal–PANI–metal structures. J. Phys. D. Appl. Phys. 38, 1437-1443, (2005).
[9]Angelopoulos, M., Ray, A., MacDiarmid, A. G. & Epstein, A. J. Polyaniline: Processability from aqueous solutions and effect of water vapor on conductivity. Synth. Met. 21, 21-30, (1987).
[10]Javadi, H. H. S., Angelopoulos, M., MacDiarmid, A. G. & Epstein, A. J. Conduction mechanism of polyaniline: Effect of moisture. Synth. Met. 26, 1-8, (1988)
[11]Zhang, D. On the conductivity measurement of polyaniline pellets. Polym. Test. 26, 9-13, (2007)
[12]Wang, Z. H., Scherr, E. M., MacDiarmid, A. G. & Epstein, A. J. Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional ‘‘metallic’’ states. Phys. Rev. B 45, 4190-4202, (1992)
[13]Li, Q., Cruz, L. & Phillips, P. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. B 47, 1840-1845, (1993)
[14]Mott, N. F. & David, E. A. Electronic Processes in Non-Crystalline Materials: Clarendon Press, Oxford (1979)
[15]Morales, J., Olayo, M. G., Curz, G. J., Castillo-Ortega, M. M., & Olayo, R. Electronic conductivity of pyrrole and aniline thin films polymerized by plasma. J Polymer Sci B 38, 3247-3255, (2000)
[16]Yeh, J. M., Chen, C. L., Chen, Y. C., Ma, C. Y., Lee, K. R., Wei, Y. & Li, S. Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)–clay nanocomposite materials. Polymer 43, 2729-2736, (2002)
[17]Kakalios, J., Street, R. A. & Jackson, W. B. Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys. Rev. Lett. 59, 1037-1040, (1987)
[18]Palmer, R. G., Stein, D. L., Abrahams, E. & Anderson, P. W. Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett. 53, 958-961, (1984)
[19]Phillips, J. C. Microscopic theory of atomic and electronic stretched exponential relaxation in high temperature superconductors. Physica C 340, 292-298, (2000)
[20]Yang, C. M., Liao, J. L. & Chiu, K. C. Diffusion of O2 in C60 crystal by measuring the decay of electrical conductivity. J. Appl. Phys. 96, 1934-1939, (2004)

Chapter 4
References
[1]Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Met. 125, 23-42 (2002).
[2]Chiang, J. C. & MacDiarmid, A. G. ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193-205 (1986).
[3]Kuo, C. T. & Chiou, W. H. Field-effect transistor with polyaniline thin film as semiconductor. Synth. Met. 88, 23-30 (1997)..
[4]Svetlicic, V., Schmidt, A. J. & Miller, L. L. Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors. Chem. Mater. 10, 3305-3308 (1998).
[5]Illing, G., Hellgardt, K., Wakeman, R. J. & Jungbauer, A. Preparation and characterisation of polyaniline based membranes for gas separation. J. Membrane Sci. 184, 69-78 (2001).
[6]Treptow, F., Jungbauer, A. & Hellgardt, K. Halide diffusion in polyaniline membranes. J. Membrane Sci. 270, 115-122 (2006).
[7]Fahlman, M., Jasty, S. & Epstein, A. J. Corrosion protection of iron/steel by emeraldine base polyaniline: An X-ray photoelectron spectroscopy study. Synth. Met. 85, 1323-1326 (1997).
[8]Yang, Y & Heeger, A. J. Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Appl. Phys. Lett. 64, 1245-1247 (1994).
[9]Chen, S. A., Chuang, K. R., Chao, C. I. & Lee, H. T. White-light emission from electroluminescence diode with polyaniline as the emitting layer. Synth. Met. 82, 207-210 (1996).
[10]Guay, D., Stewart-Ornstein, J., Zhang, X. & Hitchcock, A. P. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission x-ray microscopy. Anal. Chem. 77, 3479-3487, (2005).
[11]Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A. & Travas-Sejdic, J. Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules 41, 3125-3135 (2008).
[12]Stejskal, J., Sapurina, I. & Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1420-1481 (2010).
[13]Trchova, M., Sedenkova, I., Konyushenko, E. N., Stejskal, J., Holler, P. & Ciric-Marjanovic, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 110, 9461-9468 (2006).
[14]Sapurina, I. & Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 57, 1295-1325 (2008).
[15]Stejskal, J., Sapurina, I., Trchova, M. & Konyushenko, E. N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41, 3530-3536 (2008).
[16]Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P. & Travas-Sejdic, J. Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules 43, 662-670 (2010).
[17]Konyushenko, E. N., Trchova, M., Stejskal, J. & Sapurina, I. The role of acidity profile in the nanotubular growth of polyaniline. Chem. Pap. 64, 56-64 (2010).
[18]Rubinger, C.P.L., Costa, L.C., Faez, R., Martins, C.R. & Rubinger, R.M. Hopping conduction on PAni/PSS blends. Synth. Met. 159, 523–527 (2009).
[19]Mzenda, V. M., Goodman, S. A. & Auret, F. D. Conduction models in polyaniline the effect of temperature on the current–voltage properties of polyaniline over the temperature range 30 < T(K) < 300. Synth. Met. 127, 285–289 (2002).
[20]Upadhyay, P. K. & Ahmad, A. Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polym. Sci. 28, 191−197 (2010).
[21]Singh, R., Arora, V., Tandon, R. P., Chandra, S. & Mansingh, A. Charge transport and structural morphology of HCl-doped polyaniline. J. Mater. Sci. 33, 2067-2072 (1998).
[22]Mott, N. F. & David, E. A. Electronic Processes in Non-Crystalline Materials: Clarendon Press, Oxford (1979).
[23]Gmati, F., Fattoum, A., Bohli, N., Dhaoui, W. & Mohamed, A. B. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids. J. Phys.: Condens. Matter. 19, 326203 (2007).
[24]Cost, L.C. & Henry, F. DC electrical conductivity of carbon black polymer composites at low temperatures. J. Non-Crystal. Solids. 357, 1741–1744 (2011).
[25]Jung, J. H., Kim, B. H., Moon, B. W., Joo, J., Chang, S. H. & Ryu, K. S. Charge transport of lithium-salt-doped polyaniline. Phys. Rev. B, 64, 035101 (2001).
[26]Jeong, C. K., Jung, J. H., Kim, B. H., Lee, S. Y., Lee, D. E., Jang, S. H., Ryu, K. S. & Joo, J. Electrical, magnetic, and structural properties of lithium salt doped polyaniline. Synth. Met. 117, 99-103 (2001).
[27]Wang, Z. H., Ray, A., MacDiarmid, A. G. & Epstein. A. J. Electron localization and charge transport in poly(o-toluidine): A model polyaniline derivative. Phys. Rev. B, 43, 4373-4384 (1991).
[28]Wang, Z. H., Li, C., Scherr, E. M., MacDiarmid, A. G. & Epstein, A. J. Three dimensionality of ‘‘Metallic’’ states in conducting polymers: Polyaniline. Phys. Rev.Lett, 66, 1745-1748 (1991).
[29]Hammond, R. B., Roberts, K. J., Smith, E. D. L. & Docherty, R. Application of a computational systematic search strategy to study polymorphism in phenazine and perylene. J. Phys. Chem. B 103, 7762-7770 (1999).
[30]Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X. & MacDiarmid, A. G. X-ray structure of polyaniline. Macromolecules 24, 779-789 (1991).
[31]Kahol, P. K., Pinto, N. J., Berndtsson, E. J. & McCormick, B. J. Electron localization effects on the conducting state in polyaniline. J. Phys. Condens. Matter. 6, 5631-5638 (1994).
[32]Du, G., Avlyanov, J., Wu, C. Y., Reimer, K. G., Benatar, A., MacDiarmid, A. G. & Epstein, A. J. Inhomogeneous charge transport in conducting polyaniline. Synth. Met. 85, 1339-1340 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top