|
[1]L.A. Zadeh, “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353, 1965. [2]R.M.C.R. de Souza, F.D.A.T. de Carvalho, “Clustering of interval data based on city–block distances,” Pattern Recognition Letters, Vol. 25, pp.353-365, 2004. [3]D.S. Guru, B.B. Kiranagi, P. Nagabhushan, ”Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns," Pattern Recognition Letters, Vol. 25, pp.1203-1213, 2004. [4]F.D.A.T. de Carvalho, P. Brito and H.H. Bock, ”Dynamic Clustering for Interval Data Based on L2 Distance,” Computational Statistics, Vol. 21, pp. 231-250, 2006. [5]P. D'Urso and P. Giordani, ”A robust fuzzy k-means clustering model for interval valued data,” Computational Statistics, Vol. 21, pp.251-269, 2006. [6]M. Chavent, F.D.A.T. de Carvalho, Y. Lechevallier, R. Verde, ”New clustering methods for interval data,” Computational Statistics, Vol. 21, pp.211-229, 2006. [7]F.D. A.T. de Carvalho, ”Fuzzy c-means clustering methods for symbolic interval,” Pattern Recognition Letters, Vol. 28, pp. 423–437, 2007. [8]F.D. A.T. de Carvalho, Y. Lechevallier, ”Dynamic clustering of interval-valued data based on adaptive quadratic distances,” IEEE Trans. on Systems, Man, Cyber.–Part A, Vol. 39, pp.1295-1305, 2009. [9]F.D. A.T. de Carvalho, C.P. Tenório, ”Fuzzy k-means clustering algorithms for interval-valued data based on adaptive quadratic distances,” Fuzzy Sets and Systems, Vol. 161, pp.2978 –2999, 2010. [10]M.S. Yang, K.L. Wu, ”A similarity-based robust clustering method,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 26, pp434-448, 2004. [11]Fig. 20 Location map for 37 cities from http://texina.net/world_map_dzb.gif
|