(34.239.150.57) 您好!臺灣時間:2021/04/14 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:古明玄
研究生(外文):Ming-Syuan Ku
論文名稱:以FPGA為基礎之電力品質暫態事件偵測器
論文名稱(外文):FPGA-based Power Quality Transient Event Detector
指導教授:廖炯州
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:66
中文關鍵詞:小波轉換抑制雜訊演算法QuartusⅡ
外文關鍵詞:wavelet transformnoise suppression algorithmsQuartusⅡ
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於精密電子儀器與非線性負載的增加,使得電力暫態信號現象廣泛的受到重視。傳統小波轉換最常成用在小波分析電力擾動,有別於傅立葉轉換,小波轉換具有時域和頻域多重解析的能力。小波轉換的偵測能力會因雜訊的影響而大幅降低,因此利用抑制雜訊演算法,調整抑制雜訊之門檻值,此門檻值會依據背景雜訊來自動調整,將難以辨別是否為暫態信號的雜訊因為調整門檻值變能偵測是否在雜訊中含有暫態現象的發生。本論文使用硬體架構此離散小波轉換與抑制雜訊演算法,使用Alter公司提供的集成環境QuartusⅡ來實現電力品質暫態事件偵測器,並以ModelSim結果與MATLAB相互比對,證明本論文所設計之硬體架構無誤。

中文摘要...................................................i
英文摘要..................................................ii
誌謝.....................................................iii
目錄......................................................iv
表目錄....................................................vi
圖目錄...................................................vii
第一章 緒論.............................................1
1.1 研究背景與研究動機.....................................1
1.2 論文架構...............................................3
第二章 小波轉換與基本原理.................................4
2.1 舊有訊號分析方法....................4
2.1.1 傅立葉分析...............4
2.1.2 短時傅立葉轉換...........4
2.2 小波轉換............................6
2.2.1 連續小波轉換.............6
2.2.2 時間-頻率平面分析........7
2.2.3 離散小波轉換............11
2.3 小波轉換多重解析度分析.............12
2.3.1 尺度函數................13
2.3.2 多重解析度分析..........15
2.3.3 尺度函數與小波函數之間的關係........................................................16
2.3.4 Daubechies的尺度函數與小波函數....................................................18
2.4 濾波器頻寬(Filter Bands)與離散小波轉換之間的關係..............................................21
2.5 小波轉換於電力品質暫態事件之監測...26
第三章 抑制雜訊演算法....................................30
第四章 硬體實現方法與測試結果............................35
4.1 前言...............................35
4.2 FPGA簡介...........................35
4.3 開發環境開發環境QuartusⅡ...........36
4.3.1 QuartusⅡ設計流程......39
4.4 ModelSim之簡介......................42
4.4.1 ModelSim設計流程.......43
4.5 電力品質暫態事件偵測器之實現方法與步驟........................................................45
4.6 實驗結果............................56
4.7 效能分析...........................62
第五章 結論與未來展望.......... .........................63
5.1 結論...............................63
參考文獻.................................................64
簡歷.....................................................67


[1]T. Tarasiuk, “Comparative study of various methods of DFT calculation in the wake of IEC standard 61000-4-7,” IEEE Trans. Instrum. Meas.,vol. 58, no. 10, pp. 3666–3677, Oct. 2009.
[2]P. S. Wright, “Short-time Fourier transforms and Wigner–Ville distributions applied to the calibration of power frequency harmonic analyzers,” IEEE Trans. Instrum. Meas., vol. 48, no. 2, pp. 475–478, Apr. 1999.
[3]P. K. Dash and M. V. Chilukuri, “Hybrid S-transform and Kalman filtering approach for detection and measurement of short duration disturbances in power networks,” IEEE Trans. Instrum. Meas., vol. 53, no. 2, pp. 588–596, Apr. 2004.
[4]A. A. Girgis and R. G. Brown, “Application of Kalman filtering in computer relaying,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 7, pp. 3387–3397, Jul. 1981.
[5]A. Cataliotti, V. Cosentino, and S. Nuccio, “A phase-locked loop for the synchronization of power quality instruments in the presence of stationary and transient disturbances,” IEEE Trans. Instrum. Meas., vol. 56, no. 6,pp. 2232–2239, Dec. 2007.
[6]M. Aiello, A. Cataliotti, V. Cosentino, and S. Nuccio, “Synchronization techniques for power quality instruments,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1511–1519, Oct. 2007.
[7]U. D. Dwivedi and S. N. Singh, “Enhanced detection of powerquality events using intra and interscale dependencies of wavelet coefficients,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 358–366, Jan. 2010.
[8]J. Barros and R. I. Diego, “Analysis of harmonics in power systems using the wavelet-packet transform,” IEEE Trans. Instrum.Meas., vol. 57, no. 1, pp. 63–69, Jan. 2008.
[9]L. Peretto, R. Sasdelli, and R. Tinarelli, “On uncertainty in wavelet-based signal analysis,” IEEE Trans. Instrum. Meas., vol. 54, no. 4, pp. 1593–1599, Aug. 2005.
[10]D. G. Ece and O. N. Gerek, “Power quality event detection using joint 2-D-wavelet subspaces,” IEEE Trans. Instrum. Meas., vol. 53, no. 4, pp. 1040–1046, Aug. 2004.
[11]W. G. Morsi and M. E. El-Hawary, “Wavelet packet transformbased power quality indices for balanced and unbalanced three-phase systems under stationary or nonstationary operating conditions,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2300–2310, Oct. 2009.
[12]H. T. Yang, B. C. Yang, H. S. Hsu, C. C. Liao, S. J. Chen, J. P. Wang, and J. S. Tsai, “An IC design for real-time transient event detection,” Taiwan, Patent Publication 504024, Sep. 2002.
[13]H. He and J. A. Starzyk, “A self-organizing learning array system for power quality classification based on wavelet transform,” IEEE Trans. Power Del., vol. 21, no. 1, pp. 286–295, Jan. 2006.
[14]H. Zhang, P. Liu, and O. P. Malik, “Detection and classification of power quality disturbances in noisy conditions,” Proc. Inst. Elect. Eng.—Gener. Transm. Distrib., vol. 150, no. 5, pp. 567–572, Sep. 2003.
[15]P. Moulin, “Wavelet thresholding techniques for power spectrum estimation,” IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3126–3136, Nov. 1994.
[16]T. C. Hsung, D. P.-K. Lun, and K. C. Ho, “Optimizing the multiwavelet shrinkage denoising,” IEEE Trans. Signal Process., vol. 53, no. 1, pp. 240–251, Jan. 2005.
[17]S. C. Olhede, “Hyperanalytic denoising,” IEEE Trans. Image Process., vol. 16, no. 6, pp. 1522–1537, Jun. 2007.
[18]M. Han, Y. Liu, J. Xi, and W. Guo, “Noise smoothing for nonlinear time series using wavelet soft threshold,” IEEE Trans. Signal Process. Lett., vol. 14, no. 1, pp. 62–65, Jan. 2007.
[19]E. Bertran, “A fully analog adaptive-disturbance canceller,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1605–1609, Oct. 2007.
[20]U. D. Dwivedi and S. N. Singh, “Denoising techniques with changepoint approach for wavelet-based power-quality monitoring,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1719–1727, Jul. 2009.
[21]H. T. Yang and C. C. Liao, “A de-noising scheme for enhancing waveletbased power quality monitoring system,” IEEE Trans. Power Del., vol. 16, no. 3, pp. 353–360, Jul. 2001.
[22]Y. Xu, J. B. Weaver, D. M. Healy, and J. Lu, “Wavelet transform domain filters: A spatially selective noise filtration technique,” IEEE Trans. Image Process., vol. 3, no. 6, pp. 747–758, Nov. 1994.
[23]W. A. Wilkinson and M. D. Cox, “Discrete wavelet analysis of power system transients,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 2038–2044, Nov. 1996.
[24]H. W. Dommel, Electromagnetic Transients Program, Reference Manual (EMTP Theory Book). Portland, OR: BPA, 1986.
[25]R. C. Dugan, S. McGranaghan, and M. F. Beaty, Electric Power Systems Quality. Hightstown, NJ: McGraw-Hill, 2002.
[26]R. Y. Rubinstein, Simulation and the Monte Carlo Method. NewYork: Wiley, 1981.
[27]Altera FPGA Description. [Online]. Available: http://www.altera.com
[28]MATLAB 7.7 User’s Guide, Mathworks Inc., Natick,MA, 2008. [Online]. Available: http://www.mathworks.com


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔