跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/28 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊慶琳
研究生(外文):Ching-Lin Yang
論文名稱:用於行進車輛視訊水滴偵測與移除方法的研究
論文名稱(外文):A Study of Video-based Water Drop Detection and Removal Method for a Moving Vehicle
指導教授:王德譽王德譽引用關係
指導教授(外文):De-Yu Wang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:41
中文關鍵詞:駕駛人輔助系統影像修復雨滴偵測雜訊移除
外文關鍵詞:raindrop detectionnoise removalimage recoverydriver assistance system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:837
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
目前為了安全或保全的需求,攝影機已經逐漸安裝在車輛上,因此在本研究中,假設攝影機安裝在擋風玻璃的後方,下雨時在玻璃上的水珠會影響攝影機影像的清晰度,也容易造成以影像為基礎之相關功能的失常,如:車道偏離、前方碰撞警示、交通號誌(燈)的辨識等。因此,本研究的目標是移除使用行車影像紀錄器(DVR)所錄製之視訊影像上的水珠。
為了達成上述目標,本研究運用一些步驟,包含:直方圖等化、交集運算和二值化等來偵測水珠,接著形狀判斷以過濾水珠,這些偵測出的水珠將根據他們是位於畫面中的路面或街景區域,分別使用不同方法來進行修復與還原,這些方法包括樣本比對、形態運算以及圖像修補。
在實驗方面,我們使用實際預錄之視訊影像來驗證所設計方法的效能,從肉眼檢視下可以明顯地察覺到水珠被移除的效果,展示本論文提出之方法確實可以有效地移除視訊影像上的水珠。
Camera is widely installed in the vehicle for safety or security reasons. In this study, a camera is assumed to be installed behind the protection glass or windshield window. Water drops on the glass or window influence the clarity of the camera view. It easily causes the malfunction of related image-based functions, such as lane departure warning, front collision warning, traffic light or sign recognition, and so on. Therefore, the purpose of this study is the removal of water drops from the video frames which recorded from the in-vehicle digital video recorder (DVR).
In order to achieve the above purpose, water drops are detected by using several steps, including histogram equalization, frames intersection, binarization, and shape checking. Those detected water drop areas are restored by using different methods according to their locations in either the roadway or building area. These methods include template matching, morphological operation, and image inpainting.
Several videos are used to demonstrate the performance of the proposed method. Water drops can be removed obviously from the visual inspection. The results demonstrate that the proposed method is useful to remove water drops in video frames.
Outline
Abstract (Traditional Chinese) I
Abstract II
Table of Figures VI
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 Method 12
3.1 Process 12
3.2 Water drop detection phase 13
3.3 Water drop removal phase 24
Chapter 4 Demonstration 31
4.1 Discussion 31
Chapter 5 Conclusion and Feature Work 36


List of Figures
Figure 1: The water drops influence the clarity of the camera view 2
Figure 2: A series of video frames with water drops 3
Figure 3: Some examples of shape representation 6
Figure 4: Flow diagram of the proposed algorithm 7
Figure 5: Lane detection results from an on-road sequence 7
Figure 6: The reducing and enhancing rain drops 8
Figure 7: A example of snow removal 9
Figure 8: Driver assistance in fog 9
Figure 9: Results of noise removal 10
Figure 10: Results of raindrop model and image restoration 11
Figure 11: The process of the proposed method 13
Figure 12: An example of traffic lane detection 16
Figure 13: The example of adaptive binarization which Pr is 9 also Pb is 0.05 21
Figure 14: Water drop detection steps 23
Figure 15: The example of shape/mean value checking 24
Figure 16: An example of template matching and replacement 27
Figure 17: The difference between morphological operation and image inpainting 29
Figure 18: An image inpainting replacement of a water drop covering the traffic lane 29
Figure 19: The water drop removal example with seldom number of water drops 34
Figure 20: A water drop removal example with medium number of water drops 34
Figure 21: A water drop removal example with large number of water drops 35

List of Table
Table 1: The prototype system of development environment 33
Table 2: The executing time of each phase 33
J. P. Lewis, “Fast Template Matching,” Canadian Image Processing and Pattern Recognition Society, Canada, Quebec City, May, pp. 120-123, 1995.
K. Garg and S. K. Nayar, “Detection and Removal of Rain in Videos,” In Proc. of Computer Vision and Pattern Recognition, Washington, USA, Vol. 1, pp. 528-535, 2004.
K. Garg and S.K. Nayar, “When does a camera see rain?” In Proc. of International Conference on Computer Vision 2005, Vol. 2, pp. 1067-1074, 2005.
P. Barnum, S. Narasimhan, and T. Kanade, “Spatio-temporal Frequency Analysis for Removing Rain and Snow from Videos,” In Proc of International Workshop on Photometric Analysis for Computer Vision, 2007.
H. Murase, I. Ide, K. Mori, T. Kato, T. Miyahara, T. Takahashi, and Y. Tamatsu, “Visibility Estimation in Foggy Conditions by In-vehicle Camera and Radar,” In Proc. of International Conference on Innovative Computing, Information and Control, Vol. 2, pp. 548-551, Aug. 2006.
D. Aubert, É. Dumont, and J. P. Tarel, and N. Hautière, “Experimental Validation of Dedicated Methods to In-Vehicle Estimation of Atmospheric Visibility Distance”, IEEE Transactions on Instrumentation and Measurement, Vol. 57, pp. 2218-2225, Oct. 2008.
H. Kurihata, I. Ide and T. Takahashi, “Rainy Weather Recognition from In-Vehicle Camera Images for Driver Assistance,” In Proc. of IEEE Intelligent Vehicles Symposium. IEEE Press, pp. 205-210, 2005.
N. K. Kanhere and S. T. Birchfield, “Real-Time Incremental Segmentation and Tracking of Vehicles at Low Camera Angles Using Stable Features”, Intelligent Transportation Systems, IEEE Transactions, Vol. 9, pp. 148-160, 2008.
J. Zhou, D. Gao, and D. Zhang, “Moving Vehicle Detection for Automatic Traffic Monitoring,” IEEE Transactions on Vehicular Technology, Vol. 56, pp. 51-59, 2007.
H. Li, X. Zhang, T. Ng, W. Leow, and Y. Qi, “Rain Removal in Video by Combining Temporal and Chromatic Properties,” In Proc. of 2006 IEEE International Conference on Multimedia and Expo, pp. 461-464, Toronto, 2006.
H. Zhang, Y. Sun, X. Duan, and Z. Yu, “A Removal Algorithm of Rain and Snow from Images Based on Fuzzy Connectedness,” ICCASM, Taiyuan, 2010.
B. R. Chang, C.-P. Young, and H. F. Tsai, “Intelligent Data Fusion System for Predicting Vehicle Collision Warning Using Vision/GPS Sensing,” Expert System Applications, Vol. 37, pp. 2439–2450, March, 2010.
N. El-Sheimy, C. Wang, and H. Sun, “Automatic Traffic Lane Detection for Mobile Mapping Systems,” In Proc. of Multi-Platform/ Multi-Sensor Remote Sensing and Mapping (M2RSM), Xiamen, pp. 1, Jan. 2011.
B. T. Morris and M. M. Trivedi, “Learning, Modeling, and Classification of Vehicle Track Patterns from Live Video,” IEEE Transactions on Intelligent Transportation Systems, Vol. 9, pp. 425-437, 2008.
J. C. Halimeh and M. Roser, “Raindrop Detection on Car Windshields Using Geometric-Photometric Environment Construction and Intensity-Based Correlation,” In Proc. of IEEE Intelligent Vehicle Symposium, pp. 610-615, 2009.
L. Li, Yi Zhang, and Z. Li, “Future Research in Vehicle Vision Systems,” IEEE Intelligent Systems, Vol. 24, pp. 62-65, 2009.
A. Yamashita, K. T. Miura, T. Kaneko, and Y. Tanaka, “Restoration of Images Stained with Waterdrops on a Protection Glass Surface by Using a Stereo Image Pair,” Proceedings of IAPR Conference on Machine Vision Applications, pp. 152-155, 2005.
A. Yamashita, K. T. Miura, T. Harada, and T. Kaneko, “Virtual Wiper –Removal of Adherent Noises from Images of Dynamic Scenes by Using a Pan-Tilt-Zoom Camera,” Advanced Robotics, Vol. 19, pp. 295-310, 2005.
G. Sapiro, L. Vese, M. Bertalmio, and S. Osher, “Simultaneous Structure and Texture Image Inpainting,” IEEE Transactions on Image Processing, Vol. 12, pp. 882-889, 2003.
F. Chan, and J. Shen, “Variational Image Inpainting,” Communications on Pure and Applied Mathematics, Vol.58, pp. 579-619, May 2005.
A. Yamashita, I. Fukuchi, K. T. Miura and T. Kaneko, “Removal of Adherent Noises from Image Sequences by Spatio-temporal Image Processing”, Robotics and Automation, pp. 2683, May 2008.
A. Criminisi, K. Toyama, and P. Perez, “Region Filling and Object Removal by Exemplar-Based Image Inpainting,” IEEE Trans. Image Processing, Vol. 13, pp. 1200-1212, 2004.
A. Geiger and M. Roser, “Video-based Raindrop Detection for Improved Image Registration,” In Proc. of IEEE Computer Vision Workshops, 2010.
P.E. Hart and R. O. Duda, “Use of the Hough Transformation to Detect Lines and Curves in Pictures” Communications of the ACM, Vol. 15, pp. 11-15, Jan. 1972.
R.C. Gonzalez and R. E. Woods, “Digital Image Processing,” Pearson, 2002.
F. Gasparini and R. Schettini, “Color Balancing of Digital Photos Using Simple Image Statistics,” submitted to Pattern Recognition, Vol. 37, pp. 1201-1217, 2004.
D. Bradley and G. Roth, “Adaptive Thresholding using the Integral Image,” Journal of Graphics, GPU, and Game Tools, Vol. 12, pp. 13-21, 2008.
P. D. Wellner, “Adaptive Thresholding for the DigitalDesk,” Technical Report EPC-93-110, Rank Xerox Research Centre, Cambridge, UK, pp.18, 1993.
L.E.G. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia,” John Wiley & Sons Ltd., pp. 228 2003.
J. Vanne, E. Aho, T.D. Hamalainen, K. Kuusilinna, “A High-Performance Sum of Absolute Difference Implementation for Motion Estimation,” Inst. of Digital & Comput. Syst., Tampere Univ. of Technol., Vol. 16, pp. 876-883, July, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top