跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺郎
研究生(外文):Huang, Yu-Lang
論文名稱:結合GQM、FDEMATEL與ANP探討風力發電場設置評估因素之研究
論文名稱(外文):Identifying Factors for Wind Farm Location Determination by Integrating GQM, FDEMATEL and ANP
指導教授:葉子明葉子明引用關係
指導教授(外文):Yeh, Tsu-Ming
口試委員:黃開義陳盈彥
口試委員(外文):Huang, Kai-IChen, Yin-Yann
口試日期:2011-07-15
學位類別:碩士
校院名稱:大葉大學
系所名稱:工業工程與科技管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:129
中文關鍵詞:風力發電模糊決策實驗室分析法分析網路排序法
外文關鍵詞:wind powerFDEMATELANP
相關次數:
  • 被引用被引用:5
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於國內風機數量的快速增加,且風能發展遠比過去更加複雜的情形下,風場設置後的可能影響及民眾對於風力發電之感受和認知情形,應是能源業者於風力發電場設置前需要釐清的重要事宜。
本研究探討風力發電場設置時所應考慮的因素,同時瞭解不同屬性的產業對於設置評估因素之差異。本研究以安全與品質、經濟與效益、社會觀感、環境與生態、法規及政策之六個構面及28個評估準則來找出設置因素間彼此的影響關聯,並利用決策實驗室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL)找出各項構面之間的關聯結構,並利用分析網路程序法(Analytic Network Process, ANP)來找出準則之間的權重關係。研究結果發現安全與品質及環境與生態是兩大最主要的影響構面。而準則權重方面,業界看法對於安全設置距離是最為重視的,學界則對於環境生態的監測最為看重。
評估的結果可提昇民眾對於風力發電的了解、提供國內能源策略及有意投資風力發電之民間業者參考,以便將有限的資源做最佳的分配,達到最高的效益,有助於國內能源多元化與自主。

Subject to the rapid increase of installation of wind turbine electricity generators and wind electricity generatin demonstrating increasingly complications far more than ever domestically, the top priority issue for the wind electricity enterprises could be achieving full grasping of local neighborhood residents’ perceptive and recognition toward the installation of such the wind turbine electricity geneators prior to decision of the aforesaid wind electricity system installation location.
This reserac is created for intending to explor the factors that shall be required for deicision of the wind electricity generator installation location and also to achive a comprehensive understanding the differences of adopting variables for making evaluation among various industries. The metric measurement of this research adopts 6 aspect, including safety and quality, economy and efficiency, social perception, environment protection and ecology, legal stiplations, and government policies, and also 28 assessment criteria for making judgment on the counteracting relevancy among all individual elements for decision of an installation location and also utilizes the Decision Making Trial and Evaluation Laboratory (DEMATEL) for searching the associated relevancy structure among all aspects in conjuction of applying Analytic Network Process (ANP) for determinants of the mutual weight average ratios among all assessment criteria. The results show that safety and quality and environment and ecology are the two major influential constructs. Business circle puts the most emphasis on the distance of safety setting; however, academic circle stresses most on the monitor of environment ecology.
Hopefully, the assessement results of this research can promote the social public’s understanding of wind electricity generation, provide refereces for domestic energy policies and the enterprises that are interested at making such an investment for serving the purpose of making the optimal distribution of limited resources, achieving the best efficiency and benefiting the domestic energy source diversification and self-domination.

目錄

封面內頁
簽名頁
中文摘要 ...............iii
ABSTRACT...............iv
誌謝....................vi
目錄....................vii
圖目錄..................x
表目錄..................xi

第一章 緒論..............1
1.1 研究背景與動機.........1
1.2 研究目的..............4
1.3 研究流程..............5
第二章 文獻探討...........7
2.1 再生能源定義與發展......7
2.2 風力發電概述...........9
2.2.1 風力發電簡介.........9
2.2.2 風力發電現況及效益....11
2.2.3 國內風力發電現況......14
2.3風力發電場設置決策評估準則....17
2.3.1 決策評估..............17
2.3.2 決策準則..............18
2.4 度量指標方法論(GQM)......25
2.5 決策實驗室分析法(DEMATEL).....27
2.6 分析網路程序法(ANP).......31
第三章 研究方法與設計.........36
3.1 研究架構.................36
3.2 問卷調查流程..............40
3.3 問卷設計內容及對象.........42
3.3.1 問卷發放對象............44
3.3.2 第一階段問卷內容設計 .....44
3.3.3 第二階段問卷內容設計 .....46
3.4資料分析方法與步驟..........46
3.4.1 FDEMATEL運算及步驟......46
3.4.2 ANP步驟及運算...........50
第四章 研究結果分析與討論.......55
4.1 決策實驗室分析法分析結果....55
4.1.1 回收問卷樣本分析.........55
4.1.2 樣本結構分析.............56
4.2各構面及準則分析之結果........57
4.3網路程序分析法結果...........73
4.3.1發展網路架構模型...........73
4.3.2決定成偶比較矩陣...........75
4.3.3回收樣本分析 ..............75
4.3.4樣本結構分析 ..............76
4.3.5專家偏好及檢定一致性 ......77
4.4 ANP相依性成對比較結果 .......78
4.4.1 各構面影響下,成對比較矩陣建立.....78
4.4.2 各次準則影響下,相互之依賴關係.....79
4.4.3 超級矩陣形成與分析........80
4.4.4 選擇最適決策準則.........84
4.5討論.......................85
第五章 結論與建議 ..............88
5.1 研究結論...................88
5.1.1構面間之影響性探討.........88
5.1.2整體準則之探討.............89
5.2 研究貢獻...................90
5.2.1 學術上之貢獻..............90
5.2.2 實務上之貢獻..............91
5.3 研究限制與後續研究建議 .......91
附錄1 FDEMATEL問卷.............103
附錄2 ANP問卷..................110
附錄3 ANP相依成對比較矩陣結果(學術界)...124







圖目錄

圖1-1 本研究流程圖..................6
圖2-1 全球風力發電量趨勢圖 ..........12
圖2-2 全球風場發電量前10名 ...........13
圖2-3 AHP法與ANP法結構之差異圖........33
圖3-2 問卷設計調查流程圖..............41
圖3-3 三角模糊數對應之歸屬函數.........47
圖3.4 ANP運算步驟及流程圖 ............50
圖4-1 構面間之因果關聯圖...............60
圖4-4 社會觀感構面之因果關聯圖..........67
圖4-5 環境與生態構面之因果關聯圖........68
圖4-6 法規構面之因果關聯圖 .............70











表目錄

表2-1 風力發電設置相關文獻整理表........21
表2-2 決策準則整理表...................24
表2-3 DEMATEL相關文獻研究特性彙整表.....30
表2-4 ANP法相關研究之文獻 ...............35
表3-1 AHP與ANP差異分析表 ...............39
表3-2 風力發電場設置因素評估表.............43
表3-3 風力發電設置準則定義說明表............45
表3-4 語意尺度及對應之三角模糊數.............47
表3-5 ANP 比較尺度......................51
表3-6 隨機指標.........................53
表4-1 第一階段問卷回收情形表............55
表4-2 第一階段問卷樣本結構整理表.........56
表4-3 構面間之初始模糊直接關聯矩陣表.......58
表4-4 構面間之正規化模糊直接關聯矩陣表......58
表4-5 構面間之模糊總關聯矩陣表.............59
表4-6 解模糊化後之總關聯矩陣表.............59
表4-7 構面間之列行值整理表 ...............60
表4-8 安全與品質構面之總關聯矩陣表........62
表4-9 安全與品質構面列行值整理表..........62
表4-10 經濟與效益構面之總關聯矩陣表 .......64
表4-11 經濟與效益構面列行值整理表.........64
表4-12 社會觀感構面之總關聯矩陣表........66
表4-13 社會觀感構面列行值整理表.........66
表4-14 環境與生態構面之總關聯矩陣表 ......67
表4-15 環境與生態構面列行值整理表.........68
表4-16 法規構面之總關聯矩陣表............69
表4-17 法規構面列行值整理表..............69
表4-18 政策構面之總關聯矩陣表.............71
表4-19 政策構面列行值整理表...............71
表4-20 FDEMATEL刪除之準則彙整表.........73
表4-21 第一階段問卷回收情形表.............75
表4-22 第二階段問卷樣本結構整理表..........76
表4-23 決策準則之成對比較矩陣一致性檢定.....78
表4-24 以「安全與品質」構面為主要考量下之成對比較矩陣.....79
表4-25 環境與生態之次準則成對比較矩陣.........79
表4-26 未加權超級矩陣......................81
表4-27 加權超級矩陣.........................82
表4-28 極限超級矩陣.........................83
表4-29 ANP決策準則權重評估結果...............84
表4-30 分群比較ANP權重分析結果表..............85



參考文獻

一、中文文獻
1. 林致偉(2004),以模糊的目標-問題-度量指標方法論為基礎之軟體度量系統,東海大學資訊工程與科學研究所碩士論文。
2. 邱佩冠(2005)。再生能源的發展-以美國再生能源發展為例。全國變遷通訊雜誌,44,28-32。
3. 張魁峯(2009)。Super Decisions操作軟體手冊:以ANP突破AHP的研究限制。台北:鼎茂。
4. 曹正雄(2010)。層級分析法AHP與BOCR應用於再生能源-風力發電場選擇之研究。國立勤益科技大學工業工程與管理研究所碩士論文。
5. 黃世禛(2006),國內組織CMMI流程改善量化績效指標制訂,經濟部工業局95年度提昇資訊軟體計畫,1-213。
6. 經濟部產業技術白皮書(2010),經濟部能源局網站。
7. 簡明春(2006),電機機械雜誌,116,55-57。
8. 陳正和(2006)。風力發電之應用和效益,電力專欄,527,30-33。
9. 顏嘉良(2008),台灣風力發電推廣廣策略及效益評估之研究,國立彰化師範大學電機工程研究所碩士論文。
10. 鄭孟寧(2009)。邁向永續能源之路—借鏡丹麥,能源報導,4,11-14。


二、英文文獻
1. Arnett, E.B., Brown, W.K., Erickson, W.P., Fiedler, J.K., Hamilton, B.L., Henry, T.H., Jain, A., Johnson, G.D., Kerns, J., Koford, R.R., Nicholson, C.P., O’Connell, T.J., Piorkowski, M.D. and Tankersley, R.D., (2008), Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management, 72(1), 61–78.
2. Aras, H., Erdogmus, S. and Koc, E., (2004), Multi-criteria selection a win observation station location using analytic hierarchy process. Renewable Energy, 29(8), 1383-1392.
3. Braunholtz, S., (2003), Public Attitudes to Windfarms: A Survey of Local Residents in Scotland. Scottish Executive, Social Research.
4. Bell, D., Gray, T. and Haggett, C., (2005), The ‘social gap’ in wind farm siting decisions: explanations and policy responses. Environmental Politics, 14(4), 460–477.
5. Bolinger, M. and Wiser, R., (2009), Wind power price trends in the United States: struggling to remain competitive in the face of strong growth. Energy Policy, 37(3), 1061–1071.
6. Chen, H.H., Kang, H.Y. and Lee, H.I., (2010), Strategic selection of suitable project for hybrid solar-wind power generation systems. Renwable and Sustainable Energy Review, 14(1), 413-421.
7. Carrete, M., Sanchez, J.A. and Benitez, J.R., (2011), Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biological Conservation, 142(12), 2954-2961.
8. Chen, C.H. and Tzeng, G.H., (2011), Creating the aspired intelligent assessment systems for teaching materials. Expert Systems with Applications, 38(10), 12168-12179.
9. Chen, F.H. and Hsu, T.S., (2011), A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP. International Journal of Hospitality Management, 30, 908-932.
10. Doukas, H., Patlitzianas, K.D. and Parras, J., (2006), Supporting sustainable electricity technologies in Greece using MCDM. Science Direct, 31, 129-136.
11. Berry, D., (2009), Innovation and the price of wind energy in the US. Energy Policy, 37(11), 4493-4499.
12. Desholm, M., (2009), Avian sensitivity to mortality: Prioritising migratory birds pecies for assessment at proposed wind farms. Journal of Environmental Management, 90(8), 2672-2679.
13. Devries, J.M., Vuuren, D.P. and Hoogwijk, M.M., (2007), Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energy Policy, 35, 2590–2610.
14. Dimitropoulos, A. and Kontoleon, A., (2009), Assessing the determinants of local acceptability of wind-farm investment: a choice experiment in the Greek Aegean Islands. Energy Policy, 37(5), 1842–1854.
15. Eltham, D., Harrison, G. and Allen, S., (2008), Change in public attitudes towards a Cornish wind farm: implications for planning. Energy Policy, 36(1), 23–33.
16. EWEA (2010), Powering the energy debate . European Win Energy Association, 1–54.
17. Groothuis, P.A., Groothuis, J.D., Whitehead, J.C., (2008), Green vs. green: measuring the compensation required to site electrical generation windmills in a viewshed. Energy Policy, 36, 1545–1550.
18. Gross, C., (2007), Community perspectives of wind energy in Australia: the application of a justice and community fairness framework to increase social acceptance. Energy Policy, 35, 2727–2736.
19. GWEC (2010), Gobal wind Report 2010. Annual market update, 2010, 1-60.
20. GWEC (2009), Gobal wind 2009 Report. Global Wind Energy Council, 1-63.
21. Gray, A. and MacDonell, S.G., (1997), GQM++ A Full Life Cycle Framework for the Development and Implementation of Software Metric Programs. Proceedings of ACOSM’97 Fourth Australian Conference on Software Metrics, 22-35.
22. Horst, D.V. and Toke, D., (2010), Exploring the landscape of wind farm developments; local area characteristics and planning process outcomes in rural England. Land Use Policy, 27(2), 214-221.
23. Horst, D.V., (2007), NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policyy, 35(5), 2705-2714.
24. Hsu, C.Y., Chen, K.T. and Tzeng, G.H., (2007), FMCDM with Fuzzy DEMATEL Approach for Customers’ Choice Behavior Model. International Journal of Fuzzy Systems, 9(4), 236-246.
25. Hazard, R. and Recoiery, T., (2008), Siting potentially hazardous facilities: what factors impact perceived and acceptable risk?. Renewable Energy, 39(4), 265-281.
26. Hung, S.J., (2011), Activity-based divergent supply chain planning for competitive advantage in the risky global environment: A DEMATEL-ANP fuzzy goal programming approach. Expert Systems with Applications, 38(8), 9053-9062.
27. Johansson, M. and Laike, T., (2007), Intention to respond to local wind turbines: the role of attitudes and visual perception. Wind Energy, 10, 435–457.
28. Jones, C.R. and Eiser J.R., (2010), Understanding ‘local’ opposition to wind development in the UK: How big is a backyard?. Energy Policy, 38, 3106-3117.
29. Hurtado, J.P., Fernandez, J., and Parrondo, J.L., (2004), Spanish method of visual impact evaluation in wind farms. Science Direct, 8, 483-391.
30. Liou, J.H., Wang, H.S. and Hsu, C.C., (2011), A hybrid model for selection of an outsourcing provider. Applied Mathematical Modelling, 35(10), 5121-5133.
31. Lee, H.I. and Chen, H.H., (2009), Multy-criteria decision making on strategic of win farms. Renewable Energy, 34, 120-126.
32. Klick, H. and Smith R.A., (2010), Public understanding of and support for wind power in the United States. Renewable Energy, 35, 1585-1591.
33. Khomh, F., Vaucher, S.P. and Gueheneuc, Y.G., (2010), BDTEX: A GQM-based Bayesian approach for the detection of antipatterns. The Journal of Systems and Software, 84, 559–572.
34. Kunz, T.H., Arnett, E.B., Erickson, W.P., Hoar, A.R., Johnson, G.D., Larkin, R.P., Strickland, M.D., Thresher, R.W., Tuttle, M.D., (2007), Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5, 315–324.
35. Li, R.J., (1999), Fuzzy method in group decision making. Computers and Mathematics with Applications, 38(1), 91-101.
36. Lee, W.B., Lau, H., Liu, Z.Z and Tam, S., (2001), “A fuzzy analytic hierarchy process approach in modular product design”. Expert System, 18(1), 32-41.
37. Lin, C.J. and Wu, W.W., (2008), A causal analytical method for group decision-
making under fuzzy environment. Expert Systems with Applications, 34(1), 205-213.
38. Lin, C.L. and Tzeng, G.H., (2009), A value-created system of science ( technology ) park by using DEMATEL. Expert Systems with Applications, 36, 9683-9697.
39. Liou, J.H., Yen, L. and Tzeng, G.H., (2008), Building an effective safety management system for airlines. Journal of Air Transport Management, 14, 20-26.
40. Mona, A. and Daniel, N., (2011), Assessing information quality of e-learning systems :a web mining approach. Computers in Human Behavior, 27(2), 862-873.
41. Macdonell, S.G., (1997), Deriving Relevant Functional Measures for Automated Development Project. Information and software Technology, 35(9), 499-512.
42. Nadai, A., (2007), ‘‘Planning’’, ‘‘siting’’ and the local acceptance of wind power:Some lessons from the French case. Energy Policy, 35(5), 2715-2726.
43. Olsson, T.P., (2001), V-GQM: A Feed-Back Approach to Validation of a GQM Study. Software Metrics Symposium, Proceedings Seventh International, 4-6.
44. Pedersen E., Berf, F.V., (2010), Can road traffic mask sound from wind turbines?Response to wind turbine sound at different levels of road traffic sound. Energy Policy, 38, 2520-2527.
45. Pierpont, M.D., (2010), Wind Turbine syndrome. A report on natural Experiment, Pierpont Publication.
46. Ryunosuke, K., (2008), Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels. Science Direct, 16(1), 44-55.
47. Rodrigues, R.B., Mendes, V.M., (2011), Protection of wind energy systems against the indirect effects of lightning. Renewable Energy, 36, 2888-2896.
48. Saaty, T. L. and Takizawa, M., (1986), “Dependence andindependence: From linear hierarchies to nonlinear networks”. Eurpean Journal of Operational Research, 26, 229-237.
49. Saaty, T.L., (1996), “Decision making with dependence and feedback: The analytic network process”. Pittsburgh, PA: RWS Publication.
50. Saaty, T.L., (2001), “The analytic network process”. Pittsburgh, PA: RWS Publication.
51. Saaty, T.L., (2006), “Rank from comparisons and from ratings in the analytic hierarchy/network processes”. European Journal of Operational Research, 168(2), 557-570.
52. Schiermeier, Q., Tollefson, J., Scully, T., Witze, A. and Morton, O., (2008), Electricity without carbon. Nature, 454, 816–823.
53. Simone, K. and Frohlingsdorf, M., (2007), The Dangers of Wind Power. Der Spiegel, 34.
54. Swofford, J. and Slattery, M., (2010), Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making. Energy Policy, 38(5), 2508-2519.
55. Seo, D., Ranganathan, C. and Babad, Y., (2008), “Two-level model of customer
retention in the US mobile telecommunications service market”. Telecommunication Policy, 32(3), 182-196.
56. Sibille, T., Cloquell, V.C. and Darton, R., (2009), Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms. Science Direct, 13, 40-66.
57. Tegou, L.I., Polatidis, H. and Haralambopoulos, D.A., (2010), Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134-2147.
58. Tseng, M.L. (2009), Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause–effect model in uncertainty. Expert systems with Applications, 36(5), 9015-9023.
59. Tsai, W.H. and Chou, W.C., (2009), Selecting management systems for sustainable development in SMEs: A novel hybrid model based on DEMATEL, ANP, and ZOGP. Expert Systems with Applications, 36(2), 1444-1458.
60. Tseng, M.L., (2009), A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applications, 36(4), 7738-7748.
61. Tseng, M.L., (2009), Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause-effect model in uncertainty. Expert Systems with Applications, 36(5), 9015-9023.
62. Tzeng, G.H., Chiang, C.H. and Lin C.W., (2007), Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028-1044.
63. Tsai, W.H., Chou, W.C. and Lai, C.W., (2010), An effective evaluation model and improvement analysis for national park websites: A case study of Taiwan. Tourism Management, 31(6), 936-952.
64. Tsai, W.H. and Kuo, H.C., (2011), Entrepreneurship policy evaluation and decision analysis for SMEs. Expert Systems with Applications, 38(7), 8343-8351.
65. Tsai, W.H. and Leu, J.D., (2011), A MCDM approach for sourcing strategy mix decision in IT projects. Expert Systems with Applications, 37(5), 3870-3886.
66. Tsai, W.H. and Chou, W.C., (2011), An effectiveness evaluation model for the web-based marketing of the airline industry. Expert Systems with Applications, 10, 1016-1024.
67. Wu, W.W., (2008), Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35, 828-835.
68. Warren, C.R., Lumsden, C., O’Down, S. and Birnie, R.V., (2005), ‘Green On Green’: public perceptions of wind power in Scotland and Ireland. Journal of Environmental Planning and Management, 48(6), 853–875.
69. Warren, C.R., Mcfadyen, M., (2010), Does community ownership affect public attitudes to wind energy?A case study from south-west Scotland. Land Use Policy, 27(2), 204–213.
70. Wallace, J.R. and Dawson, M., (2009), O&M safety at the wind farm. renewable energy focus, 10(5), 28-30.
71. Wolsink, M., (1994), EntanglementofInterestsandmotives—assumptions behind the NIMBY-theoryonfacilitysiting. Urban Studies, 31(6), 851–866.
72. Wu, W.W. and Lee, Y.T., (2007), Developing global manager’s competencies using fuzzy DEMATEL method. Expert Systems with Applications, 32, 499-507.
73. Wu, W.W., (2008), Choosing knowledge management strategies by using a combined ANP and DEMATDL approach. Expert Systems with Applications, 35, 828-835.
74. Wolsink, M., (2010), Near-shore wind power—Protected seascapes, environmentalists’ attitudes, and the technocratic planning perspective. Land Use Policy, 27(2), 195-203.
75. Wolsink, M., (2007), Wind power implementation: The nature of public attitudes: Equity and fairness instead of ‘backyard motives’. Science Direct, 11(6), 1188-1207.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top