(34.226.234.102) 您好!臺灣時間:2021/05/12 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育祥
研究生(外文):Chang,Yu-Hsiang
論文名稱:菌株Bacillus sp. DYU-Too17生產N-乙醯幾丁寡醣之最適培養條件
論文名稱(外文):Optimal Production of N-Acetylchitooligosaccharides by Bacillus sp. DYU-Too17
指導教授:吳淑姿吳淑姿引用關係凃瑞澤凃瑞澤引用關係
指導教授(外文):Wu,Shu-TzuTu,Jui-Tse
口試委員:胡淳怡陳錦坤吳淑姿凃耀國
口試委員(外文):Hu,Chun-YiChen,Chin-KunWu,Shu-TzuTu,Yao-Kuo
口試日期:2011-06-17
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:111
中文關鍵詞:幾丁質分解酶N-乙醯幾丁五醣反應曲面法最適化條件酵素分離純化與特性分析
外文關鍵詞:ChitinaseN-AcetylchitopentoseResponse surface methodologyOptimum conditionPurification and characterization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究從彰化縣大村鄉篩選出菌株Bacillus sp. DYU-Too 17,進行其生合成N-乙醯幾丁五醣之最適化培養條件探討與幾丁質酶純化與特性分析。
一次一因子條件探討,在原料方面以α-幾丁質粉末為碳源時,可生合成N-乙醯幾丁五醣,並於α-幾丁質含量4%時,有較高N-乙醯幾丁五醣產量,為0.186 g/L;在氮源方面以NH4Cl為氮源時,N-乙醯幾丁五醣產量高於以其他氮源培養時,濃度為0.3 g/L NH4Cl培養時N-乙醯幾丁五醣產量較高,為0.127 g/L;在溫度方面以30℃培養時N-乙醯幾丁五醣產量較高,為0.080 g/L。
以含4%α-幾丁質、0.3 g/L NH4Cl之CB(chitin broth)培養基於30℃下,誘導菌株分泌幾丁質酶。其粗酵素液經硫酸銨沉澱、透析與DEAE-Sepharose CL-6B,純化出幾丁質酶。其最適反應溫度與pH值分別為40℃與7.0,於溫度10~30℃與pH值5-8時具有較佳穩定性。金屬離子Fe3+、Hg2+、Mg2+與Zn2+對幾丁質酶活性有抑制作用,Ag+則有促進活性作用。電泳分析幾丁質酶的分子量為36 KDa,Km 與 Vmax分別為1.7 g/L與333 U/L。
本研究亦以反應曲面法探討菌株Bacillus sp. DYU-Too 17生合成N-乙醯幾丁五醣之最適化培養條件,結果發現α-幾丁質粉末對N-乙醯幾丁五醣產量達到顯著之影響(p<0.05),由反應曲面法尋得最適培養基組成分為4.47% α-幾丁質粉末與0.36 g/L NH4Cl,可估得最大N-乙醯幾丁五醣產量,為0.367 g/L。此外在實際的觀測值(實驗數據)與回應模式的預測值比較,並無太大差異,表示此一回應模式能適切預測菌株Bacillus sp. DYU-Too 17生產N-乙醯幾丁五醣之產量。

In this study, a strain, Bacillus sp. DYU-Too 17, was isolated from Dacun Village in Changhua County. The aim of this study was to investigate an optimal condition for the production of N-acetylchitopentose by Bacillus sp. DYU-Too 17. In addition, the chitinase produced by this strain was purified and characterized.
The one-factor-at a time method was first used to investigate the effects of carbon and nitrogen sources on the production of N-acetylchitopentose. When α-chitin was the sole carbon source, the major product was N-acetylchitopentose. Especially, the highest production of N-acetylchitopentose (0.186 g/L) was obtained in a medium of 4% α-chitin; NH4Cl seemed to be a better nitrogen source to produce N-acetylchitopentose, and the concentration was 0.127 g/L in a medium containing 0.3 g/L NH4Cl; The highest yield of N-acetylchitopentose (0.080 g/L) was obtained at 30℃.
The crude enzyme was obtained from a culture of Bacillus sp. DYU-Too 17 in a medium containing 4% α-chitin and 0.3 g/L NH4Cl at 30℃. The purification procedures included precipitation by ammonium sulfate, dialysis, and anion exchange chromatograph (DEAE-Sepharose CL-6B). The optimal reaction temperature for the purified chitinase was 40℃, and the optimal reaction pH was 7.0. The purified chitinase was stable at 10~30℃ and pH 5-8. Metal ions Fe3+, Hg2+, Mg2+ and Zn2+ could inhibit the chitinase activity, and however, Ag+ could enhance the activity. The molecular weight of the major chitinase was determined to be 36 KDa, and its kinetic constants Km and Vmax were 1.7 g/L and 333 U/L, respectively.
In addition, response surface methodology was used to search for an optimal condition for culturing Bacillus sp. DYU-Too 17. From the analysis of variance, the α-chitin concentration was significant for the N-acetylchitopentose production (p<0.05). The optimum concentrations of α-chitin and NH4Cl for the N-acetylchitopentose production were determined to be 4.47% and 0.36 g/L, respectively. The predicted maximum production of N-acetylchitopentose was 0.367 g/L. In addition, comparison between the actual observations (experimental data) and predicted response showed no significant differences. This indicates that the response surface model could well predict the N-acetylchitopentose production of Bacillus sp. DYU-Too 17.

封面內頁
簽名頁
中文摘要 iii
英文摘要 v
誌謝 vii
目錄 viii
圖目錄 xii
表目錄 xv

1. 緒論 1
2. 文獻回顧 2
2.1 幾丁質 2
2.1.1 幾丁質之應用 2
2.1.2 幾丁聚醣 4
2.1.3 幾丁聚醣之應用 8
2.1.4 幾丁質之型態 8
2.2 N-乙醯幾丁寡醣與幾丁寡醣 9
2.3 幾丁質酶 10
2.4 反應曲面法 15
3. 材料與方法 17
3.1 實驗架構 17
3.2 實驗藥品 17
3.3 實驗器材 19
3.4 試劑及培養基之配製 20
3.4.1培養基組成 20
3.4.2 McIlvaine buffer之配製 22
3.4.3 呈色劑之配置 22
3.4.4 膠態幾丁質之製備 22
3.5 酵素法製備N-乙醯幾丁寡醣 24
3.5.1 菌株篩選 24
3.5.2 菌株篩選、保存與活化 24
3.5.3 還原醣含量之測定 24
3.5.4 幾丁質分解酶活性分析 25
3.5.5 菌株生長曲線測定 25
3.5.6 蛋白質濃度測定 25
3.5.7 幾丁質水解產物之HPLC分析 26
3.5.8 聚丙烯醯胺膠體電泳分析 26
3.6 幾丁質酶之分離純化與特性分析 28
3.7 中心混成實驗設計 30
4. 結果與討論 34
4.1 幾丁質分解菌株之篩選 34
4.1.1菌株於篩選培養基之生長情形 34
4.1.2 幾丁質酶之性質 34
4.1.3 篩選菌株之水解產物分析 40
4.2 菌株DYU-Too17之基本特性分析 42
4.3 一次一因子法 46
4.3.1碳源 46
4.3.1.1 幾丁質酶活性之分析 46
4.3.1.2 還原醣量與pH值變化 47
4.2.1.3 水解產物分析 51
4.3.2 α-幾丁質濃度 51
4.3.2.1 幾丁質酶活性之分析 53
4.3.2.2 還原醣量與pH值變化 53
4.3.2.3 水解產物分析 57
4.3.3 氮源 59
4.3.3.1 幾丁質酶活性之分析 57
4.3.3.2 還原醣量與pH值變化 59
4.3.3.3 水解產物分析 62
4.3.4 NH4Cl濃度 62
4.3.4.1 幾丁質酶活性之分析 65
4.3.4.2 還原醣量與pH值變化 65
4.3.4.3 水解產物分析 69
4.3.5 溫度 69
4.3.5.1 幾丁質酶活性之分析 69
4.3.5.2 還原醣量與pH值變化 72
4.3.5.3 水解產物分析 72
4.4 幾丁質酶之純化與特性分析 72
4.4.1 粗酵素液中幾丁質酶之萃取 76
4.4.2 陰離子交換層析 79
4.4.3 酵素之特性分析 79
4.4.3.1 酵素分子量之測定 81
4.4.3.2 酵素之最適反應溫度與溫度穩定性 81
4.4.3.3 酵素之最適pH 值與pH 值穩定性 81
4.4.3.4 金屬離子對酵素活性之影響 85
4.4.3.5 酵素動力學 85
4.5 探討N-乙醯幾丁五醣生成量之最適培養條件 85
4.5.1 實驗設計 88
4.5.2 實驗結果 89
5. 結論 99
5.1 結論 99
5.2 展望 101
參考文獻 102
附錄 109

圖目錄

圖2.1 纖維素、幾丁質及幾丁聚醣之結構 3
圖2.2 幾丁質經由鹼液去乙醯處理生成幾丁聚醣 6
圖2.3 幾丁質之去乙醯作用:幾丁質經由幾丁質脫乙醯酶形成幾丁聚醣及醋酸 7
圖3.1 實驗流程圖 18
圖4.1 菌株SH1、SH2、SH3、SH4、及SH5於膠態幾丁質培養基產生透明環之型態 36
圖4.2 以CB培養基培養菌株SH1~SH5之幾丁質分解酶活性 37
圖4.3 以CB培養基培養菌株SH1~SH5還原醣生成量之變化 38
圖4.4 以CB培養基培養菌株SH1~SH5 pH值之變化 39
圖4.5 菌株Bacillus sp. DYU-Too 17生產之N-乙醯幾丁五醣的高效能液相層圖 43
圖4.6 菌株Bacillus sp. DYU-Too 17之16S rDNA部份核甘酸序列 44
圖4.7 菌株SH4於LB培養基培養之生長曲線 45
圖4.8 不同碳源對菌株Bacillus sp. DYU-Too 17幾丁質分解酶活性之影響 48
圖4.9 不同碳源對菌株Bacillus sp. DYU-Too 17還原醣生成量之影響 49
圖4.10 不同碳源對菌株Bacillus sp. DYU-Too 17 pH值之影響 50
圖4.11 不同α-幾丁質粉末濃度對菌株Bacillus sp. DYU-Too 17幾丁質分解酶活性之影響 54
圖4.12 不同α-幾丁質粉末濃度對菌株Bacillus sp.DYU-Too 17還原醣生成量之影響 55
圖4.13 不同α-幾丁質粉末濃度對菌株Bacillus sp. DYU-Too 17 pH值之影響 56
圖4.14 不同氮源對菌株Bacillus sp. DYU-Too 17幾丁質分解酶活性之影響 60
圖4.15 不同氮源對菌株Bacillus sp. DYU-Too 17還原醣生成量之影響 61
圖4.16 不同氮源對菌株Bacillus sp. DYU-Too 17 pH之影響 63
圖4.17 不同NH4Cl濃度對菌株Bacillus sp. DYU-Too 17幾丁質分解酶活性之影響66
圖4.18 不同NH4Cl濃度對菌株Bacillus sp. DYU-Too 17還原醣生成量之影響 67
圖4.19 不同NH4Cl濃度對菌株Bacillus sp. DYU-Too 17 pH值之影響 68
圖4.20 不同溫度對菌株Bacillus sp. DYU-Too 17幾丁質分解酶活性之影響 71
圖4.21 不同溫度對菌株Bacillus sp. DYU-Too 17還原醣生成量之影響 73
圖4.22 不同溫度對菌株Bacillus sp. DYU-Too 17 pH值之影響 74
圖4.23 pH不同對菌株Bacillus sp. DYU-Too 17粗酵素液幾丁質酶活性之影響 77
圖4.24 硫酸銨濃度對 Bacillus sp. DYU-Too 17粗酵素液殘餘活性之影響 78
圖4.25 菌株Bacillus sp. DYU-Too 17粗酵素液之DEAE-Sepharose CL-6B管柱層析圖 80
圖4.26 以SDS-PAGE分析DEAE-Sepharose CL-6B管柱純化之第60-80管 82
圖4.27菌株Bacillus sp. DYU-Too 17幾丁質酶之最適反應溫度與溫度穩定性 83
圖4.28菌株Bacillus sp. DYU-Too 17幾丁質酶之最適反應pH值與pH值穩定性 84
圖4.29 菌株Bacillus sp. DYU-Too 17之幾丁質分解酶之Km與Vmax 87
圖4.30 α-chitin powder與 NH4Cl對N-乙醯幾丁五醣產量之反應曲面圖 95
圖4.31 α-chitin powder與 NH4Cl對N-乙醯幾丁五醣產量之等高線圖 96
圖4.32 N-乙醯幾丁五醣產量預測值與觀測值之殘差分析圖 97

表目錄

表2.1 幾丁聚醣及幾丁質來源 5
表2.2 產生幾丁質酶之微生物 12
表2.3 近年來幾丁質分解酵素之特性分析 13
表3.1 培養基之組成 21
表3.2 McIlvaine緩衝溶液 23
表3.3 分離膠組成量 27
表3.4 堆積膠組成 27
表3.5 中心混成設計實驗之控因 31
表3.6 中心混成實驗設計表 32
表4.1 幾丁質分解菌株之篩選 35
表4.2 以2%α-幾丁質粉末培養菌株SH2、SH3、SH4、SH5之N-乙醯幾丁寡醣種類及含量 41
表4.3 以不同碳源培養菌株Bacillus sp. DYU-Too 17之N-乙醯幾丁寡醣種類及含量 52
表4.4 以不同濃度α-幾丁質粉末培養Bacillus sp. DYU-Too 17之N-乙醯幾丁寡醣的分析 58
表4.5 以不同氮源培養Bacillus sp. DYU-Too 17之N-乙醯幾丁寡醣含量 64
表4.6 不同濃度NH4Cl培養Bacillus sp. DYU-Too 17之N-乙醯幾丁寡醣的含量 70
表4.7 不同溫度培養Bacillus sp. DYU-Too 17之N-乙醯幾丁寡醣的含量 75
表4.8 金屬離子或EDTA對菌株Bacillus sp. DYU-Too 17幾丁質酶活性之影響 86
表4.9 中心混成設計實驗之控因 90
表4.10中心混成試驗之結果 91
表4.11兩因子中心混成實驗之複迴歸分析表 92
表4.12反應曲面模式之變異數分析表 94
表4.13實際實驗數據與回應曲面模式所預估的預測值比較 98



參考文獻

1.林玠伯。2009。以Aeromonas sp.DYU-Too13生產N-乙醯幾丁寡醣及其幾丁質酶之特性分析。大葉大學生物產業學系研究所論文。彰化。
2.李宜玲。2004。利用Aeromonas caviae DYU-BT4之幾丁質分解酵素水解幾丁質生產N-乙醯幾丁寡醣。大葉大學生物產業學系研究所論文。彰化。
3.洪哲潁和陳國誠。1992。回應曲面實驗設計法在微生物酵素生產上之應用。化工專論,39(2):3-18。
4.洪碧霙。2003。蜡蚧輪枝菌幾丁聚醣酶之特性分析及應用研究。朝陽科技大學應用化學所碩士論文。台中。
5.陳錦坤、許清輝、李錦榆、林忠亮、方炳勲、黃冬梨、吳奇生。2001。在電泳片上直接分析chitinase活性的新方法。90學年度技術與教學研討會論文專輯:21-23。明志技術學院。台北。
6.蕭正明。2008。限氮條件下添加有機酸對菌株Yu-3生和成PHBV之影響。大葉大學生物產業學系研究所論文。彰化。
7.許智強。2006。利用可逆溶解型擔體於Bacillus sp.所生產幾丁質酶及蛋白酶之固定化研究。大葉大學生物產業科技學系研究所論文。彰化。
8.莊榮輝。2000。酵素化學實驗。國立台灣大學農業化學系生物化學研究室。台北。
9.楊裕珵。2009。菌株DYU-Too14之幾丁質分解酶純化與特性分析。大葉大學生物產業學系研究所論文。彰化。
10.謝伊金。2007。N-乙醯幾丁寡醣生產菌之篩選與幾丁質分解酶之特性分析。大葉大學生物產業學系研究所論文。彰化。
11.顧振旗。2008。發酵培養Aeromonas hydrophila Too12生產N-乙醯幾丁寡醣之培養條件探討。大葉大學生物產業學系研究所論文,彰化。
12.龜山猶一。1981。化學分析試藥配製法。正文書局。台北。
13. Bhattacharya, D., Nagpure, A. and Gupta, R. K. 2007. Bacterial chitinases: properties and potential. Crit. Rev. Biotechnol. 27: 21–28.
14.Blanes, M., Pilar, M. D. and Jesús, F. 2007. Inmunosupresión e infección en el paciente trasplantado. Enfermedades Infecciosas y Microbiología Clínica. 27(2):143-154.
15.Bradford, M. M. 1976. A rapid and sensitive metgod for the quantitation of miceogram quantites of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72: 248-254.
16.Chang, K. L., Lee, J. and Fu, W. R. 2000. HPLC analysis of N-acetyl-chito-oligosaccharides during the Acid Hydrolysis of Chitin. J. Food Drug Anal. 8(2):75-83.
17.Chre´tiennot, D. M. J., Giraud, G. M. M., Vaulot, D., Putaux, J. L. and Chanzy, H. 1997. The chitinous nature of filament ejected by Phaeocystis (Prymnesiophycae). J Phyco. 33:666–72.
18.Jong, C. H., Choi, B. K., Kim, K. Y., Yoo, Y. J. and Oh, S. J. 2001. In vitro antimicrobial activity of a chitooligosaccharide mixture. Int. J. Antimicrob. Agents.18:553–557.
19.Chen, C. T., Huang, C. J., Wang, Y. H. and Chen, C. Y. 2004. Two-step puriWcation of Bacillus circulans chitinase A1 expressedin Escherichia coli periplasm. Protein Expr Purif. 37: 27–31.
20.Felse, P. A. and Panda, T. 1999. Self-directing optimization of parameters for extracellular chitinase production by Trichoderma harzianum in batch mode. Process Biochem. 34:563–6.
21.Fenice, M., Selbmann, L., Giambattista, R. D. and Federici, F. 1998. Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res Microbiol. 149:289–300.
22.Frandberg, E. and Schnurer, J. Chitinolytic properties of Bacillus pabuli K1. 1994. J. Appl. Bacteriol. 76:361–7.
23.Hart, P. J., Pfluger, H. D., Monzingo, A. F., Hollis, T. and Robertus, J. D. 1995. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 Å resolution. J. Mol. Biol. 248: 402–413.
24.Huang, R., Niranjan, R. and Se-Kwon, K. 2006. Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr. Polymers. 63:122-129.
25.Hirano, S. and Midorikawa, T. 1998. Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan–cellulose fiber. Biomaterials. 19:293–7.
26.Izabela, S. S., Maura, D. C., Olga L. T. M. and Valdirene M. G. 2004. A chitinase from Adenanthera pavonina L. seeds: purification,characterisation and immunolocalisation. Plant Sci .167: 1203–1210.
27.Jeuniaux, C. 1966. Chitinases. Methods Enzymol. 8 : 644-650.
28.Kawada, M., Hachiya, Y., Arihiro, A. and Mizoguchi, E. 2007. Role of mammalian chitinases in inflammatory conditions. Keio J. Med. 56:21-27.
29.Keyhani, N. O. and Roseman, S. 1996. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic β-N-acetylglucosaminidase. J Biol Chem. 271(334): 25–32.
30.Kumar. R., Majeti, N. V. 2000. A review of chitin and chitosan applications. Reactive and functional polymers 46 :1-27.
31.Krajewska, B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microbiol Technol. 35:126–39.
32.Mahadevan, B. and Crawford, D. L. 1997. Properties of the chitinase of the antifungal agent Streptomyces lydicuis WYEC108. Enzyme Microb Technol. 20:489–93.
33.Mathur, N. K. and Narang C. K. 1990. Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ. 67:938–42.
34.Matahira, Y., Ito, M. and Sakai, K. 1998. The application of chitin-chitosan to bone filling materials. Kichin Kitosan Kenkyu: Publ. Nippon Kitin, Kitosan Gakkai. 4:142-143.
35.Mana, I., Kouji, M., Atsushi, M. and Masahiro, M. 2009. Purification and characterization of chitinase from the stomach of silver croaker Pennahia argentatus. Protein Expr. Purif. 65(2):214-222.
36.Mckay, G., Blair, H. S. and Gardner, J. R. 2000. Adsorption of dyes on beads and microgranules of chitosan, Biomaterials 21 chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 27 :1115- 3043.
37.Molinari, L. M., Raissa, B. P., Denise, O. S., Tânia, U. N., Celso, V. N., Benedito, P. and Dias, F. 2007. Identification and partial characterisation of a chitinase from Nile tilapia. Oreochromis niloticus. Comparative Biochemistry and Physiology. Part B. 146 :81–87.
38.Ohishi, K., Yamagishi, M., Ohta, T., Suzuki, M., Izumida, H. and Sano, H. 1996. Purification and properties of two chitinases from Vibrio alginolyticus H-8. J. Ferment. Bioeng. 82:598–600.
39.Patel, A. K., Vijay, K. S., Ravi, P. Y., Arthur J. G. and Moir, M. V. 2010. Purification and characterization of a new chitinase from latex of Ipomoea carnea. Process Biochem. 45 :675–681.
40.Patil, R. S. and Ghormade, V. and Deshpande, M. V. 2000. Chitinolytic enzymes: an exploration. Enzyme Microb Technol. 26:473–83.
41.Rajapakse, N., Moon, M. K., Eresha, M., Ronghua, H. and Se K. K. 2006. Carboxylated chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosacoma cells via down-regulation of AP-1. Biocmica Biophysica et Acta. 1760:1780-1788.
42.Pera, L. M., Majollı, M. V. and Baigorı, M. D. 1997. Purification and characterization of a thermostable and highly specific :β-N-acetyl-Dglucosaminidase from Aspergillus niger 419. Biotechnol Appl Biochem. 26:18–37.
43.Righetti, P. G., Gianazza, E., Gelfi, C., Chiari, M. Hames, B. D. and Richwood, D. 1990. In: Gel Electro- phoresis of Proteins: A Practical Approach. (Eds.). Oxford University Press, New York. 149-216.
44.Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31:603-632.
45.Rogalski, J., Krasowska, B., Glowiak, G., Wojcik, W. and Targonski, Z. 1997. Purification and some properties of extracellular chitinase produced by Trichoderma viride F-19. Acta Microbiol Pol. 46:363–75.
46.Hina, A., Ahmad, R. S. and Zargham, S. 2010. Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydr. Res. 345:402–407.
47.Takayanga, T., Ajisaka, K., Takiguchi, Y. and Shimahara K. 1991. Isolation and characterization of thermostable chitinase from Bacillus licheniformis X-7U. Biochem Biophys Acta. 1078:404–10.
48.Tao, Y., Yan, Z. Z., Sun, J. W., Cheng, X. L. and Zhang, S. Z. 1990. Purification and characterization of β-N-acetylhexosaminidase from Aspergillus tamarii. Acta Microbiol Sin. 30:259–66.
49.Tagawa, K. and Okazaki, K. 1991. Isolation and some cultural conditions of Streptomyces species which produce enzymes lysing Aspergillus niger cell wall. J Ferment Bioeng. 71:230–6.
50.Thamthiankul, S., Suan-Ngay, S., Tantimavanich, S. and Panbangred, W. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol. 56:395–401.
51.Tokoro, A., Suzuki, K., Mikami, T., Okawa, Y., Suzuki, S. and Suzuki M. 1989. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 51(15):403-408.
52.Tsigos, I., Aggeliki, M., Dimitris, K and Vassilis, B. 2000. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 18(7):305-312.
53.Tweddell, R. J., Jabaji-Hare, S. H. and Charest, P. M. 1994. Production of chitinase and β-1,3-glucanse by Stachybotrys elengans, a mycoparasite of Rhizoctonia solani. Appl Environ Microbiol. 60:489–98.
54.Tzeng, Y. M., Liu, B. L., Kao, P. M. and Feng, K. C. 2003. Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzyme Microb.Technol. 33:410–415.
55.Usui, T., Hayashi, Y., Nanjo, F. and Ishido, Y. 1984. Transglycosylation reaction of a chitinase purified from Nocardia orientail. Biochem Biophys Acta. 923:302–9.
56.Van, A., Aalten, D. M., Komander, D., Synstad, B., Gaseidnes, S., Peter, M. G. and Eijsink, V. G. 2001. Structural insights into the catalytic mechanism of a family 18 exochitinase. Proc. Natl. Acad. Sci. 98:8979-8984.
57.Vyas, P. and Deshpande, M. V. 1989. Chitinase production by Myrothecium verucaria and its significance in fungal mycelia degradation. J. Gen. Microbiol. 35:343–50.
58.Wipa, S., Chomphunuch, S., Supansa, P., Adeleke H. A., Robinson, R. C. 2008. Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: Implications for the catalytic mechanism J. Struct. Biol. 62:491–499.
59.Young, M. E., Bell, R. L. and Carroad, P. A. 1985. Kinetics of chitinase production. I. Chitin hydrolysis. Biotechnol Bioeng. 27:769–75.
60.Young, M. E., Bell, R. L. and Carroad P. A. 1985. Kinetics of chitinase production. II. Relation between bacterial growth, chitin hydrolysis, and enzyme synthesis. Biotechnol Bioeng. 27:776–80.
61.Yusof, N. L., Wee, A., Lim, L. Y. and Khor E. 2003. Flexible chitin filmsas potential wound-dressing materials: wound model studies. J Biomed Mater Res A. 66A:224–32.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔