跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鈞凱
研究生(外文):Huang, JyunKai
論文名稱:區域為基礎之階層式視差估測技術
論文名稱(外文):Region Based Hierarchical Disparity Estimation Technique
指導教授:林國祥林國祥引用關係
指導教授(外文):Lin,GuoShiang
口試委員:莊政宏張世旭林國祥
口試委員(外文):Chang, ChengHungChang, ShihHsuLin,GuoShiang
口試日期:2011-07-21
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:立體匹配視差估計區域為基礎階層式
外文關鍵詞:stereo matchingdisparity estimationregion basedhierarchical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個區域為基礎之階層式視差估計法則。此視差估
計法則包含三個部份:階層式結構、區域為基礎的視差估計與視差
修補。階層式結構包含色彩轉換、邊緣偵測與次取樣。為了估計視
差值,本論文基於正規化交互相關函數,顏色特徵和空間特徵設計
一個成本函數。並後續取得高解析的視差圖。為了獲得遮蔽區域內
之視差值與修補outlier,本論文提出一個視差修正法則。
根據實驗結果,本論文提出之視差估計法則可以有效獲得視差
值。
In this paper, we proposed a hierarchical disparity estimation scheme using
region matching. The proposed method is composed of hierarchical structure,
region-based disparity estimation, and disparity refinement. In the hierarchical
structure, three procedures, color transform, edge detection and sub-sample, are
performed. To perform disparity estimation, a cost function based on normalized cross
correlation as well as color and spatial features is developed and used as a
measurement in the proposed disparity estimation method. And get a high resolution
depth map. In disparity refinement, the disparity values in occlusion regions are
estimated and patch outlier.
According to experimental results, our proposed scheme can perform disparity
estimation well.
封面內頁
簽名頁
中文摘要 ..............................................................................................iii
ABSTRACT.......................................................................................... iv
誌謝....................................................................................................... v
目錄...................................................................................................... vi
圖目錄................................................................................................viii
表目錄................................................................................................... x
第一章 緒論.......................................................................................... 1
1.1 研究動機......................................................................... 1
1.2 系統概要......................................................................... 3
1.3 相關技術......................................................................... 5
1.3.1 困難之處.............................................................. 6
第二章系統描述.................................................................................. 8
2.1 階層式架構..................................................................... 8
2.2 區域切割......................................................................... 9
2.2.1 Mean shift segmentation...................................... 10
2.2.2 Labeling............................................................... 12
第三章視差估計................................................................................ 16
3.1 何謂視差....................................................................... 16
3.2 本論文的估測方法....................................................... 18
3.2.1 色彩轉換............................................................ 19
3.2.2 Sobel 運算子...................................................... 20
3.3 成本函數....................................................................... 21
3.3.1 正規化交互相關函............................................ 22
3.3.2 顏色特徵............................................................ 23
3.3.3 空間相關性........................................................ 24
3.4 視差修補....................................................................... 24
3.5 取得高解析度視差圖................................................... 28
第四章實驗結果與分析.................................................................... 29
4.1 系統執行環境與定義評估標準................................... 29
4.2 視差修正比較............................................................... 31
4.3 實驗數據比較............................................................... 50
4.4 中間視角合成............................................................... 52
第五章結論與未來研究方向............................................................ 55
5.1 結論............................................................................... 55
5.2 未來研究方向............................................................... 55
參考文獻............................................................................................. 57
[1] Gary Bradski and Adrian Kaehler, Learning OpenCV: Computer
Vision with the OpenCV Library, O'Reilly, 2008.
[2] Rafael C. Gonzalez and Richard E. Woods, Digital Image
Processing, Third Edition, Pearson Prenctice Hall, 2010.
[3] Asmaa Hosni, Michael Bleyer, Margrit Gelautz and Christoph
Rhemann, “Local stereo matching using geodesic support
weights,” IEEE International Conference on Image Processing,
pp.2093-2096, 2009.
[4] Mohammadjavad Abdollahifard, Karim Faez and Mohammadreza
Pourfard, “Fast stereo matching using two stage color-based
segmentation and dynamic programming,” International
Symposium on Mechatronics and its Applications, pp.1-6 , 2009.
[5] A.K. Riemens, O.P. Gangwal, B. Barenbruga and R.-P.M. Berretty,
“Multi-step joint bilateral depth upsampling,” Visual
Communications and Image Processing, pp.1-12, 2009.
[6] An-Chun Luo, Wen-Chao Chen, De-Jin Shau and Chung-Wei Lin,
“Occlusion size aware multi-viewpoint images generation from 2D
plus depth images,” The International Society for Optical
Engineering, pp1-11, 2010.
[7] Andrea Fusiello, Vito Roberto and Emanuele Trucco, “Efficient
Stereo with Multiple Windowing,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
-58-
pp.858-863, 1997.
[8] Hansung Kim and Kwanghoon Sohn, “Hierarchical disparity
estimation with energy-based regularization,” International
Conference on Image Processing, vol.1,pp.I- 373-376, 2003.
[9] Ilkwon Park and Hyeran Byun, “Depth map refinement using
multiple patch-based depth image completion via local stereo
warping,” Optical Engineering, pp.1-8, 2010.
[10]Le Thanh SACH, Kiyoaki ATSUTA, Kazuhiko HAMAMOTO, and
Shozo KONDO, “A Robust Stereo Matching Method for Low
Texture Stereo Images,” International Conference on Computing
and Commuaication Technology, pp.1-8, 2009.
[11]Ju Yong Chang, Kyoung Mu Lee and Sang Uk Lee, “Stereo
matching using iterative reliable disparity map expansion in the
color–spatial–disparity space,” Pattern Recognition,Vol.40,
pp.3705-3713, 2007.
[12]Jie Zhao, Jiali Chai and Guozun Men, “A Fast Quasi-Dense
Matching Algorithm with an Adaptive Window,” Chinese Control
and Decision Conference, pp.4375-4379, 2009.
[13]Kun Wang, “Adaptive stereo matching algorithm based on edge
detection,” International Conference on Image Processing,
pp.1345-1348, 2004.
[14]Andres Klaus, Mairo Sormann and Konrad Karner,
“Segment-Based Stereo Matching Using Belief Propagation and a
Self-Adapting Dissimilarity Measure,” International Conference on
-59-
Pattern Recognition, pp.15-18, 2006.
[15]Liang Zhang, “Fast Stereo Matching Algorithm for Intermediate
View Reconstruction of Stereoscopic Television Images,” IEEE
Transactions on Circuits and Systems for Video Technology, Vol.
16, pp.1259-1270, 2006.
[16]Li Tang, Chengke Wu and Zezhi Chen, “Image dense matching
based on region growth with adaptive window,” Pattern
Recognition Letters, Vol.23, pp.1169-1178, 2002.
[17]Marcus Mueller, Frederik Zilly and Peter Kauff, “Adaptive
cross-trilateral depth map filtering,” 3DTV-Conference: The True
Vision - Capture, Transmission and Display of 3D Video, pp. 1-4,
2010.
[18]Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient belief
propagation for early vision,” International Journal of Computer
Vision, Vol.70, pp.55-79, 2006.
[19]Xiaoyong Lin, Yu Liu and Wenzhan Dai, “Study of Occlusions
Problem in Stereo Vision,” World Congress on Intelligent Control
and Automation, pp.5062-5067, 2008.
[20]Zheng Gua, Xianyu Su, Yuankun Liu and Qican Zhang, “Local
stereo matching with adaptive support-weight, rank transform and
disparity calibration,” Pattern Recognition Letters, Vol.29,
pp.1230-1235, 2008.
[21]P. An, Z. Zhang, and L. Shi, “Theory and Experiment Analysis of
Disparity for Stereoscopic Image Pairs,” in ISIMP, 2001, pp.
-60-
68–71.
[22]http://vision.middlebury.edu/stereo/
[23]http://colecovision.eu/graphics/DSSIM/
[24]http://www.e-zone.com.hk/news.php?documentid=11312
[25]http://shopping.pchome.com.tw/?mod=item&func=exhibit&IT_N
O=AHAD1L-A55549387&c=A05
[26]http://www.goshtv.com/2011/03/07/spirit-awards-2011-official-gift
-suite/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top