跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家瑞
研究生(外文):Hsu,Chiajui
論文名稱:手機使用者對行動遊戲的使用態度與意圖之研究:以最適刺激水準為調節變數
論文名稱(外文):A Study of Cellphone User's Attitude and Intention toward Mobile Games: The Moderating Role of Optimum Stimulation Level
指導教授:吳為聖吳為聖引用關係
指導教授(外文):WU,Weisheng
口試委員:林清同許晉龍
口試委員(外文):Ling,ChingtorngHsu,Chinlung
口試日期:2011/7/14
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:理性行動理論行動遊戲知覺便利性知覺易用性社會影響沉浸經驗最適刺激水準
外文關鍵詞:Theory of reasoned actionMobile gamePerceived conveniencePerceived ease of useSocial influenceFlow experienceOptimal stimulation level
相關次數:
  • 被引用被引用:5
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
各種市場調查結果皆顯示行動遊戲是使用者經常使用的手機功能,是哪些因素引發使用者想玩行動遊戲?不同刺激程度的使用者玩行動遊戲的因素有何差異?本研究目的探討影響行動遊戲使用意圖的因素,及不同最適刺激水準如何影響行動遊戲玩家的使用意圖。根據理性行動理論、沉浸理論及行動載具特性,並納入最適刺激水準,建立研究架構。透過網路問卷調查方式,共收集567份有效問卷。經效度與信度檢測,本研究問卷的信度與效度均達標準值。利用結構方程模式檢驗研究模型,結果顯示本研究模型的配適度指標大部分符合門檻值,全部假設皆成立。亦即玩家對行動遊戲的態度正向影響玩行動遊戲的意圖、玩家的沉浸經驗同時正向影響玩行動遊戲的態度及意圖、玩家對行動遊戲的知覺便利性、知覺易用性、社會影響同時正向影響玩行動遊戲的態度及意圖。最適刺激水準對手機玩家的知覺易用性和社會影響具有調節效果。本研究提供一個行動遊戲的使用意圖模式分析使用者玩行動遊戲的動機因素,研究發現可作為遊戲開發者設計行動遊戲之參考。
Many marketing researches indicated that mobile games are frequently used by cellular phone users. What factors and motivations make those users want to play mobile games? What are the differences between the factors motivating the mobile game players with high and low stimulation levels? This study explores the factors influencing cellular phone users’ intention toward mobile games, and how different optimal stimulation levels (OSL) impact on their intentions to use mobile games. According to theory of reasoned action, flow theory, and mobile device’s characteristics, a research model was hypothesized. A total of 567 effective samples were collected through the web-based survey. The results of the instrument’s validity and reliability testing indicated that both reached the suggested threshold. A structural equation modeling approach was used to test the research model. Those results showed that the purposed model had an acceptable goodness of fit and all hypotheses were sustained. That is, the cellular phone users’ attitude positively influence the intention to use mobile games. The users’ flow experience also positively influence attitude and intention to use mobile games. Perceived convenience, perceived ease-of-use, and social influence have positive impacts on attitude and intention to use mobile games respectively, too. The OSL has a moderating effect on user’s perceived ease-of-use and social influence toward intention to use mobile games. This study establishes an intention model for analyzing user’s motivators toward mobile games. These Findings can provide references for mobile game developers.
中文摘要 ..................... Iii
英文摘要 ..................... Iv
誌謝辭  ..................... V
內容目錄 ..................... Vi
表目錄  ..................... Vii
圖目錄  ..................... Ix
第一章  緒論................... 1
  第一節  研究背景與動機............ 1
  第二節  研究目的與問題............ 6
  第三節  研究流程............... 6
第二章  文獻探討................. 9
  第一節  理性行動理論............. 9
  第二節  社會影響............... 11
  第三節  沉浸經驗............... 12
  第四節  系統特性............... 17
  第五節  最適刺激水準............. 19
第三章  研究方法................. 21
  第一節  研究模型與假說............ 21
  第二節  變數操作型定義與衡量工具....... 27
  第三節  資料收集............... 31
  第四節  預試分析............... 31
第四章  研究結果................. 33
  第一節  敘述性統計.............. 33
  第二節  測量模型分析............. 38
  第三節  結構模型分析............. 44
  第四節  調節效果............... 47
  第五節  討論................. 54
第五章  結論與建議................ 59
  第一節  研究結論............... 59
  第二節  研究意涵............... 61
  第三節  研究限制............... 62
  第四節  未來研究建議............. 63
參考文獻 ..................... 64
附錄A  正式問卷.................. 77

一、中文部分

國際電信聯盟ITU(2010),全球手機用戶普及率[線上資料],來源:http://www.itu.int/en/pages/default.aspx[2010, December 30]。

美國的市場研究機構eMarketer (2010),美國手機營收趨勢[線上資料],來源:http://www.emarketer.com/ [2010, December 30]。

應用程式市調網站148apps.biz (2010),App Store應用程式項目比例[線上資料],來源:http://148apps.biz/categories/all-posts/ [2010, December 30]。

美國市調公司Gartner(2010),消費者應用程式下載分析[線上資料],來源:http://www.gartner.com/technology/home.jsp [2010, December 30]。

黃俊英(1999),行銷研究:管理與技術,第六版,台北:華泰文化事業公司。

程茵珮(2004),影響線上遊戲玩家行為之研究,國立台灣科技大學資訊管理研究所未出版之碩士論文。

王子駿(2003),科技準備性與服務便利性對使用科技基礎服務影響之研究-以第三代行動通訊為例,淡江大學企管所未出版碩士論文。
林宜洵(2004),消費者採用電腦無線上網之行為研究,台北大學企管所未出版碩士論文。

施欣怡(2004),消費者採用行動資訊服務行為之研究,台北大學企管所未出版碩士論文。

高翊群(2007),行動導覽服務使用者接受模式分析-創新擴散之觀點,大同大學資訊經營學系未出版碩士論文。

陳毅瑋(2008),消費者預購便利商店商品預購之研究-理性行動理論之應用,崑山科技大學企業管理研究所未出版碩士論文。

許晉龍(2003),線上遊戲使用者行為研究,國立台灣科技大學資訊管理系未出版博士論文。

蕭麗茹(2009),社會影響與消費者從眾行為之關係-以購買旅遊產品為例,國立嘉義大學觀光休閒管理系未出版碩士論文。

賴昇鴻(2009),探討行動適地性服務之干擾效果對使用者接受度之影響,國立雲林科技大學資訊管理系未出版碩士論文。

錢冠宇(2009),行動導覽系統建置與接受行為評估,國立中正大學會計與資訊科技系未出版碩士論文。

李佳蓉(2010),行動廣告接受度對廣告效果影響之研究。國立中山大學企業管理研究所未出版碩士論文。

徐木龍(2011),大學生歸因傾向對部落格使用意圖之調節效果-以某科技大學為對象。國立雲林科技大學資訊管理研究所未出版碩士論文。

李孟娜(2002),產品涉入與生活型態對多樣化行為之影響。國立台灣大學商學研究未出版碩士論文。

黃柔婷(2009),線上遊戲與網頁遊戲玩家之使用行為研究,台南科技大學商學與管理研究所未出版碩士論文。

李朝瑞,(2010),影響線上遊戲玩家參與遊戲意願之因素探討,國立東華大學企業管理研究所未出版碩士論文。

林豊勝,(2010),運用延伸科技接受模式探討玩家玩線上遊戲之影響因素,開南大學資訊及電子商務研究所未出版碩士論文。

二、英文文獻

Anckar, B., & D'Incau, D. (2002). Value creation in mobile commerce: findings from a consumer survey. JITTA, 1(4), 43-64.
Brown,E.and Cairns,P. (2004). A Grounded Investigation of Game Immersion. Computer Human Interaction, 1297-1300
Brown, L. G. (1989). The strategic and tactical implications of convenience in consumer product marketing. The Journal of Consumer Marketing, 3(6), 13-19.
Bhattacherjee, A. (1995). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370.
Berry, L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of Marketing, 66, 1-17.
Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety, Jossey-Bass , San Francisco, CA.
Chen, H., Wigand, R., & Nilan, M. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5), 585–608.
Choi, D., & Kim, J. (2004). Why people continue to play online games: in search of critical design factors to increase customer loyalty to online contents. Cyberpsychology & Behavior, 7(1), 11–24.
Churchill, G.A. (1979). A Paradigm for Developing Better Measures of Marketing Constructs. Journal of Marketing Research, 16, 64-73.
Cronbach,L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.
Clarke, I. (2001). Emerging value propositions for M-commerce. Journal of Business Strategies, 2(18), 133-145.
Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118-143.
Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience, New York, NY: Harper and Row.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 3(13), 319-340.
Dunphy, J. (1995). Knowledge Management:What every information professional should know. Information Management Journal, 34(3),10-16.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. MA: Addison-Wesley.
Fisher, Robert J. and Linda L. Price. (1992). An Investigation into the Social Context of Early Adoption Behavior. Journal of Consumer Research, 19, 477-486.
Fiore, A.M., Jin, H.J., & Kim, J. (2005). For Fun and Profit: Hedonic Value from Image Interactivity and Responses toward an Online Store. Psychology & Marketing, 22(8), 669-694.
Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-computer interaction. The Journal of Psychology, 128(4), 381–391.
Ghani, J. R. Supnick, P. Rooney. (1991). The experience of flow in computer-mediated and in face-toface groups. In HairJ. F.AndersonR. E.TathamR. L.BlackW. C. (Eds.), Multivariate data analysis with readings. New York: MacMillan.
Hsu, C. L., & Lu, H. P. (2004). Why do People Play On-line Games? An Extended TAM with Social Influences and Flow Experience . Information & Management, 41(7), 853-868.
Hsu, C. L. (2010). Exploring the Player Flow Experience in E-Game Playing . International Journal of Technology and Human Interaction, 6(2), 47-64.
Hung, S. Y., Ku, C. Y., & Chang, C. M. (2003). Critical Factors of WAP services adoption: an empirical study. Electronic Commerce Research and Applications, 2(1), 46-60.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in Hypermedia Computer-mediated environments:conceptual foundations. Journal of Marketing, 60, 50–68.
Ha, I., Yoom, Y. and Choi, M. (2007). Determinants of Adoption of Mobile Broadband Wireless Access Environment. Information & Management, 44, 276-286.
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behaviour. Information Systems Research, 13(2), 205–223.
Konradt, U., Filip, R., & Hoffmann, S. (2003). Flow experience and positive affect during hypermedia learning. British Journal of Educational Technology, 34(3), 309–327.
Karahanna, E., Straub, D. W. and Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183-213.
Katz M. L., and Shapiro C. (1985). Network externalities, competition, and compatibility. American Economic Review( 75) 424-440.
Khalifa, M., & Cheng, S. K. N. (2002). Adoption of mobile commerce: role of exposure. Proceedings of the 35th HICSS.
Kish, G.. B., & Donnenwerth, G.. B. (1969). Interests and Stimulus Seeking. J Counseling psychol, 16(6), 551-556.
Leung, L., & Wei, R. (1999). Seeking news via the pager: An expectancy-value study. Journal of Broadcasting & Electronic, 43(3), 299-315.
Lu, J., Liu, C., Yu, C. S., & Wang, K. L. (2008). Determinants of accepting wireless mobile data services in China. Information and Management, 45(1), 52-64.
Looney, C. A., Jessup, L. M., & Valacich, J. S. (2004). Emerging business models for mobile brokerage services. Communications of the ACM, 6(47), 71-77.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230.
Mort, G. S., & Drennan, J. (2002). Mobile digital technology: emerging issues for marketing. Journal of Database Marketing & Customer Strategy Management, 1(10), 9-23.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perception of adoption an information technology innovation. Information Systems Research, 3(2), 192-222.
Novak, T., Hoffman, D. and Yung, Y. (2000). Measuring the Customer Experience in On-line Environments: A Structural Modeling Approach. Marketing Science, 19, 1, 22-42.
Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation.
Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: a structural modeling approach. Marketing Science, 19(1), 22–42.
Oliver, R.L. (1997). Satisfaction: A Behavioral Perspective on the Consumer, New York: Irwin/McGraw-Hill.
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134.
Rettie, R. (2001). An exploration of flow during Internet use. Internet Research: Electronic Networking Application and Policy, 11(2), 103–113.
Rice, R. E., & Steinfield, C. W. (1990). New forms of organizational communication via electronic mail and voice messaging. In J. H. Andriessen & R. Roe (Eds.), Telematics and work. New York: Wiley.
Richard, M. O., & Chandra, R.(2005). A Model of Consumer Web Navigational Behavior: Conceptual Development and Application. Journal of Business Research , 58(8), 1019-1029.
Rogers, Everett M. (1962). Diffusion of Innovations. The Free Press. New York.
Rogers, E. M. (1983), Diffusion of Innovation, 3rd edition, New York: The Free Press.
Ram, S. and Sheth, J. N. (1987), Bringing Innovation To Market: How To Break Corporate and Customer Barriers, NY: Wiley and Sons.
Rogers E. M. (1995). Diffusion of Innovation, 4th edition, New York: The Free Press.
Saade, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42, 317–327.
Sally R., & Indrit, T. (2007) A Conceptual Framework and Propositions for the Acceptance of Mobile Services. Journal of Theoretical and Applied Electronic Commerce Research, 2(2), 61-73.
Shang, R. A., Chen, Y. C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42, 401–413.
Sheppard, B.H., Hartwick, J., & Warshaw, P.R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modification and future research. Journal of Consumer Research, 15, 325-343.
Skadbert, Y. X., & Kimmel, J. R. (2004). Vistors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20, 403–422.
Steenkamp, J.E.M., & Baumgartner, H. (1992). The role of optimum stimulation level in exploratory consumer behavior. Journal of Consumer Research, 19, 434-448.
Sweetser, P. & Wyeth, P. (2005). GameFlow: A Model for Evaluating Player Enjoyment in Games. Computers in Entertainment, 3 (3). ACM Press.
Stanforth, N. (1995). Fashion Innovators, Sensation Seeking, and Clothing Individualists. Perceptual and Motor skills, 81, 1203-1210.
Suh, B., Han, I. (2002). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications, 1(3), 247-263.
Taylor, S., & Todd, P.A. (1995). Assessing it usage: the role of prior experience. MIS Quarterly, 19(4), 561-570.
Tang, J., & Veijalainen, J. (2001). Using agents to improve security and convenience in mobile e-commerce, Proceedings of the 34th HICSS.
Trevino, L. K. and Webster, J. (1992). Flow in computer-mediated communication - electronic mail and voice mail evaluation and impacts. Communication Research , 19, 539-573.
Wan, C. S., & Chiou, W. B. (2006). Psychological Motives and Online Games Addiction: A Test of Flow Theory and Humanistic Needs Theory for Taiwanese Adolescents. Cyberpsychology & Behavior, 9(3), 317–324.
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9, 411–426.
Webster, J., & Ho, H. (1997). Audience engagement in multi-media presentations. The Data Base for Advances in Information Systems, 28(2), 63–77.
Wu, J., Li, P., Rao, S. (2008). Why they enjoy virtual game words? An empirical investigation. Journal of Electronic Commerce Research ,9(3), 219–230.
Wu, J. H., and Wang, S. C. (2005). What Drives Mobile Commerce? An Empirical Evaluation of the Revised Technology Acceptance Model . Information & Management, 42(5), 719-729.
Wellman, B. (2001). Computer networks as social networks. Science, 293(14 September), 2031-2034.
Wixom, B.H. & Watson, H.J. (2001). An empirical investigation of the factors affecting data warehousing success. MIS Quarterly, 25(1), 17-41.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top