(3.232.129.123) 您好!臺灣時間:2021/03/06 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范皇王
研究生(外文):Hoang-Vuong Pham
論文名稱:創新型機器人輪椅上下螺旋階梯之運動分析
論文名稱(外文):Motion Analysis of a Novel Robotic Wheelchair on Climbing Winding Stairs
指導教授:鄭鴻儀鄭鴻儀引用關係陳俊達陳俊達引用關係
指導教授(外文):Hong-Yih ChengChun-Ta Chen
口試委員:任志強廖德潭陳俊達梁卓中張義芳鄭鴻儀
口試委員(外文):Jyh-Chyang RennTe-Tan LiaoChun-Ta ChenCho-Chung LiangYih-Fang ChangHong-Yih Cheng
口試日期:2011-03-14
學位類別:博士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:81
中文關鍵詞:機器人輪椅上下階梯螺旋階梯動態轉向等效拘束運動規劃
外文關鍵詞:Robotic wheelchairstair-climbingwinding stairdynamic turningequivalent constraint motion planning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是設計一新的爬樓梯機器人輪椅,並分析其穩定度,運動狀態及建立相關之動態模型。該機器人輪椅主要是由樞接在支撐基座兩側之多肢節結構所組成,以使該機器人輪椅可以上下階梯;特別強調是具有上下螺旋階梯之能力。此外,構成多肢節結構體之短臂、長臂及三角支座之轉動是由周轉複合行星齒輪系來致動。該具轉動之多肢節機構除應用於階梯上下,並可保持身體基座水平而無需附加之伺服機構,且所提出之機器人輪椅設計更顯示其相關操控程序之簡單性。上下螺旋階梯之動態模型則是依據側滑轉向分析所推導以作為軌跡規畫及運動分析。該運動模型主要是確使操控者可以開模式安全地操控該機器人輪椅。除此,本論文亦提出等效拘束法來規畫該機器人輪椅上下螺旋階梯之運動軌跡。模擬及實驗結果顯示該機器人輪椅可以動態轉向方式上下螺旋階梯。
This study presents the mechanical design, stability analysis, the locomotion and the associated dynamic models of a new robotic wheelchair on climbing stairs. The prototype stair-climbing robotic wheelchair is constructed comprising a pair of rotational multi-limbed structures pivotally mounted on opposite sides of a support base so that the robotic wheelchair can ascend and descend stairs; especially, capability of climbing winding stairs is addressed. In additional, the short arm, long arm and triangular support structures within each rotational multi-limbed structure rotate under the actuating effects of epicyclical gear trains. The rotational multi-limbed mechanisms are developed to solve for the stair-climbing whilst ensuring the stability of the sitting base at all stages of the stair navigation maneuver without the need for additional servo-mechanisms, and the proposed robotic wheelchair shows the simplification of the associated operation process. Based on the skid-steering analysis, the dynamic models for climbing winding stairs are developed for the trajectory planning and motion analyses. These models are required to ensure a passenger’s safety in such a way that the robotic wheelchair is operated in an open mode. Moreover, an equivalent constraint method is proposed for the prescribed motion of the robotic wheelchair on climbing winding stairs. The results of the simulation and maneuver are reported that show the behavior of the prototype as it climbs a winding stair in a dynamic turning.
中文摘要....................................................... iii
ABSTRACT...................................................... iv
CONTENTS...................................................... vi
LIST OF FIGURES............................................... viii
LIST OF TABLES................................................ x
SYMBOL LIST................................................... xi

CHAPTER I: INTRODUCTION....................................... 1
1.1 Motivation................................................ 1
1.2 Literature review......................................... 3
1.2.1 Previous designs of robotic wheelchair.................. 3
1.2.2 Summary................................................. 9
1.3 Research objective and scope.............................. 10
CHAPTER II: ROBOTIC WHEELCHAIR DESIGN AND IMPLEMENTATION...... 13
2.1 Design principle.......................................... 13
2.2 Stages of climbing stairs................................. 19
2.3 Prototype manufacturing................................... 25
2.4 Stability analysis........................................ 27
2.5 Experiment results........................................ 30
CHAPTER III: DYNAMIC EQUATIONS FOR CLIMBING WINDING STAIRS.... 35
3.1 Dynamic model on climbing winding stairs.................. 35
3.2 Dynamics of skid-steering on climbing winding stairs...... 36
3.3 Resistant moment.......................................... 38
3.4 Summary................................................... 43
CHAPTER IV: TRAJECTORY GENERATION FOR CLIMBING WINDING STAIRS. 44
4.1 Equivalent constraint motion planning..................... 44
4.2 Relation of turning angles and rotational angles.......... 47
CHAPTER V: SIMUALATION AND MANEUVER VERIFICATION.............. 50
5.1 Simulation results........................................ 50
5.2 Maneuver verification..................................... 54
CHAPTER VI: CONCLUSIONS....................................... 59
6.1 Conclusions............................................... 59
6.2 Future research suggestion................................ 60
REFERENCES.................................................... 61
AUTOBIOGRAPHY................................................. 66
LIST OF PUBLICATIONS.......................................... 68
Journal submissions........................................... 68
Conference submissions........................................ 68


[1]Jackson, R., “Robotics and its role in helping disabled people”, Engineering Science and Education Journal, Vol. 2, Issue 6, 267-262, 1993.
[2]Jones, M.L., and Sanford, J.A., “People with mobility impairments in the United States today and in 2010”, Assistive Technology, 8:43–53, 1996.
[3]Cooper, R.A., “Engineering manual and electric powered wheelchairs”, Critical Reviews in Biomedical Engineering, 27 (1&2): 27–73, 1999.
[4]Jones, M.K., and Sanford, J.A., “People with mobility impairments in the United States today and in 2010”, Assistive Technology, 8:43-53, 1996.
[5]Lachmann, S. M., Greenfield, E., and Wrench, A., “Assessment of need for special seating and/or electronic control systems for wheelchairs among people with severe physical disabilities”, Clinical Rehanbilitation, 7:151-156, 1993.
[6]Wheelchair Foundantion was established by Kenneth E. Behring in June 13, 2000 at a ceremony on Capitol Hill in Washington, DC http://www.wheelchairfoundation.org
[7]Kettle, M., Rowley, C., and Chamberlain, M.A., “A national survey of wheelchair users”, Clinical Rehanbilitation, 6:67-73, 1992.
[8]Ashmore, R., “Personal communication”, May 2000.
[9]Wellman, P., Krovi, V., Kumar, V., and Harwin, W., “Design of a wheelchair with Legs for people with Motor Disabilities”, IEEE Transactions on Rehabilitation Engineering, Vol.3, No. 4, pp. 343-353, 1995.
[10]Hirose, S., Yoneda, K., Arai, K., and Ibe, T., “Design of a quadruped walking vehicle for dynamic walking and stair climbing”, Advanced Robotics, Vol. 9, No. 2, pp. 107-124, 1995.
[11]Pack, D.J., “Perception-based control for a quadruped walking robot”, in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2994-3001, 1996.
[12]Martens, J.D., and Newman, W.S., “Stabilization of a mobile robot climbing stairs”, in Proceedings of the IEEE International Conference on Robotics & Automation, pp. 2501-2507, 1994.
[13]Kagiwada, T., “Robot design for stair navigation”, JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, Vol. 39, No3, pp. 629-635, 1996.
[14]Taguchi, K., “Enhanced wheel system for step climbing”, Advanced Robotics, Vol. 9, No. 2, pp. 137-147, 1995.
[15]Uchida, Y., Furuichi, K., and Hirose, S., “Fundamental performance of 6 wheeled off-road vehicle HELOS-V”, in Proc. of the 1999 IEEE International Conference on Robotics & Automation, pp. 2336-234, 1999.
[16]Kamen, D.L., Ambrogi, R.R., Heinzmann, J.D., Heinzmann, R.K., Herr, D., Morrel, J.B., “Control of a balancing personal vehicle”, US Patent 6 443 250, Sept. 3, 2002.
[17]Sunwa Stair-Ship TRE-52. Sunwa CO. Ltd. Sendagaya, Shiuya-ku, Tokyo Japan. www.sunwa-jp.co.jp.
[18]Lawn, M.J., Sakai, T., “Development and practical application of a stair-climbing wheelchair in Nagasaki”, Journal of Human Friendly Welfare Robotic Systems 2 (2), pp. 33_39, 2001.
[19]Hirose, S., Fukushima, E.F., Damoto, R., Nakamoto, H., “Design of terrain adaptive versatile crawler vehicle HELIOS-VI”, in: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2001, vol. 3, pp. 1540_1545, 2001.
[20]Yoneda, K., Ota, Y., Hirose, S., “Development of a hi-grip stair climbing crawler with hysteresis compliant blocks”, in: Proceedings of the 7th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR, Madrid, Sept. 22_24, 2004.
[21]Ding, D., Cooper, R.A., Terashima, S., Yang, Y.S., Cooper, R., “A study on the balance function of the iBOT transporter”, in: Proc. RESNA 2004 Annu. Conf., Orlando, FL, 2004.
[22]Din, D., and Cooper, R.A., “Electric-powered wheelchair”, IEEE Control Systems Magazine, pp. 22-34, 2005.
[23]Miyagi, M., Uchida, T., Komeda, T., Komeda, H., and Funakubo, H., “Development of stair climbing wheelchair with legs and wheels system (1st Report)-Development of stair climbing mechanism”, Journal of the Japan Society for Precision Engineering(in Japanese), Vol.64, No.3, pp. 403-407, 1998.
[24]Bourbakis, N.G., “Kydonas-an autonomous hybrid robots: walking and climbing”, IEEE Robotics & Automation Magazine, pp. 52-59, 1998.
[25]Grand, C., Benamar, F., Plumet, F., Bidaud, P., “Stability and traction optimized of a reconfigurable wheel-legged robot”, The International Journal of Robotics Research 23 (10_11), 1041_1058, 2004.
[26]Hirose, S., Takeuchi, H., “Study on roller-walk (basic characteristics and its control)”, in: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3265_3270, 1996.
[27]Germann, D., Hiller, M., Schramm, D., “Design and control of the quadruped walking robot ALDURO”, in: Proc. of the 22nd International Symposium on Automation and Robotics in Construction, ISARC, Ferrara, Sept. 11_14, 2005.
[28]Lawn, M.J., Takeda, T., “Design of a robotic-hybrid wheelchair for operation in barrier present environment”, in: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20(5), pp. 2678_2681, 1998.
[29]Lawn, M.J., and Ishimatsu, T., “Modeling of a stair-climbing wheelchair mechanism with high single-step capability,” IEEE Transaction on Neural Systems and Rehabilitation Research, Vol. 11, No. 3, pp. 323-332, 2003.
[30]Morales, R., Feliu, V., Gonzalez, A., and Pintado P., “Kinematic model of a new staircase climbing wheelchair and its experimental validation”, The international Journal of Robotics Research, Vol. 25, No. 9, pp. 825-841, 2006.
[31]Gonzalez, A., Morales, R., Feliu, V., and Pintado, P., “Improving the mechanical design of new staircase wheelchair”, Industrial Robot: An International Journal, Vol. 34, No. 2, pp. 110-115, 2007.
[32]Morales, R., Feliu, V., González, A., “Optimized obstacle avoidance trajectory generation for a reconfigurable staircase climbing wheelchair”, Robotics and Autonomous Systems, Vol 57, p.97-114, 2010.
[33]Chen, C., Feng, C., and Hsieh, Y., “Design and realization of a mobile wheelchair robot for all terrains”, Advanced Robotics, Vol. 17, No. 8, pp. 739-760, 2003.
[34]Chen, C.T., and Pham, H.V., “Design and Fabrication of a Statically-stable Stair-climbing Robotic Wheelchair,” Industrial Robot, Vol. 36, No. 6, pp. 562-569, 2009.
[35]Argyros, A., Georgiadis, P., Trahanias, P., and Tsakiris, D., “Semi-Autonomous Navigation of a Robotic Wheelchair”, Journal of Intelligent and Robotic Systems, vol. 34, no. 3, pp. 315-329, 2002.
[36]Kuo, C.H., Huang, H.L., and Lee, M.Y., “Development of Agent-Based Autonomous Robotic Wheelchair Control Systems”, Journal of Biomedical Engineering – Applications, Basis, Communications, vol. 15, no. 6, pp. 12-23, Dec. 2003.
[37]Dalvand, M.M., and Moghadam, M.M., “Stair Climber Smart Mobile Robot (MSRox)”, Autonomous Robots, Vol 20, No 1, pp. 3-14, Issue 1 January 2006.
[38]Morales, R., Feliu, V., Gonzalez, A., and Pintado, P., “Kinematics of a New Staircase Climbing Wheelchair”, Proceedings of the 7th International Conference CLAWAR, 2004.
[39]Wong, J. Y., “Theory of ground vehicles,” John Wiley & Sons, INC., 1993.
[40]Henami, H., and Weimer, F.C., “Modeling of nonholonomic dynamic systems with applications”, Journal of applied mechanics, Vol. 48, March, 1981.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 簡宗梧:〈左傳屬辭比事的成就─以記晉惠公與晉文公為例〉,《東方雜誌》,1988年4月,第21卷第10期。
2. 谷瑞照:〈先秦時期的夷夏觀念〉,《復興崗學報》,1977年6月,第17期。
3. 簡宗梧:〈左傳強調晉文公得人而得國〉,《孔孟月刊》,1980年11月19卷第3期。
4. 簡宗梧:〈左傳寫晉文公的譎而不正〉,《孔孟月刊》,1982年1月第19卷第5期。
5. 李隆獻:〈中國敘事文學的不遷之祧-淺析左傳的敘事技巧〉,《錢穆先生紀念館館刊》1997年,第5期。
6. 陽平南:〈從左傳敘戰論春秋時代戰爭觀〉,《筧橋學報》,1999年9月第6期。
7. 林淑貞:〈抉擇的智慧─讀重耳出亡始末有感〉,《國文天地》,2000年10月第16卷第5期。
8. 簡光明:〈〈秦晉殽之戰〉析論─兼論其在國文教學上的運用〉,《屏東教育大學學報》,台灣屏東,2005年第23期,頁173-198。
9. 劉文強:〈再論鄭莊公─補《左傳微》〉,《文與哲》,2006年12月第9期。
10. 戈依莉(2003)。銀髮族運動與生活品質。長庚科技學刊,2,95-102。
11. 余幸宜、于漱、李蘭(2004)。老年人之健康促進。臺灣醫學,8(4),582-588。
12. 林世昌(2000)。太極拳運動對中老年人健康促進的功效。中華體育,14(4),89-93。
13. 林建得、陳德宗、丁春枝(2002)。師院生健康概念、健康促進生活型態、情緒穩定性與健康體適能之相關研究-以國立屏東師院學生為例。屏東師院學報,16,435-474。
14. 林瑞興(1999)。增加身體活動量對老年人的重要性。大專體育,46,87-93。
15. 徐瑞祥(2008)。我國老人健康促進推動概況。健康世界,8-11。
 
系統版面圖檔 系統版面圖檔