(3.236.214.19) 您好!臺灣時間:2021/05/06 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:俞又仁
研究生(外文):Yu,yorain
論文名稱:智慧型電動車輛線傳傳動與操控嵌入式系統之研究
論文名稱(外文):Intelligent Electrical Vehilce By-Wire Powertrain and Handling Control Embedded System Study
指導教授:張一屏
指導教授(外文):Chang,I-Ping
口試委員:張舜長盧昭暉張一屏
口試委員(外文): Chang,I-Ping
口試日期:2011-06-29
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:121
中文關鍵詞:智慧型電動線傳車輛電動車輛操控動態模擬及控制系統線傳動態硬體迴路模擬嵌入式四輪轉向控制系統
外文關鍵詞:Intelligent Vehicle Drive-by-Wire ControlVehicle Drive and Handling Dynamic Simulation Control SystemHardware-in-Loop SimulationFour Wheel Steer Embedded Control Module
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在建立智慧型電動線傳車輛之傳動與操控動態模擬系統,藉由控制輪穀馬達驅動、輪穀馬達制動及車輛轉向,使車輛在行駛中駕駛者處於安全狀態。當車輛直線行駛時採取四輪之牽引力控制,使車輛在直線行駛時不論是加速、制動的情況下,車輪皆不至產生打滑及鎖死情況,以確保車輛穩定直線行駛。車輛轉彎時,由當時車速、車身橫擺率及車輛滑移角計算出各輪穀馬達獨立之輪轉速以控制轉彎差速,避免輪胎產生不正常磨耗及車輛不穩定之現象。運用全車線傳傳動之概念,省去車輛本身原本之機械構造,使車體本身更加之精簡化,也可使車輛本身之操控性更加之精準且迅速。
本研究採用控制策略包括整合牽引力控制、防鎖死控制、主動式轉向控制、輪穀馬達輸扭力控制及四輪獨立轉向控制等,使車輛不論在直行或轉彎時皆能快速及安全行駛。 其中轉向控制包含前後輪轉向比值隨車速變化、轉向減速比隨車速變化及自動修正調整各輪轉向角使車身橫擺率、車身側加速度、車身滑移角為最佳操控性能輸出。
本研究運用嵌入式系統作為其智慧型電動車輛之控制單元,目標為電動車輛之周邊元件模組化,可快速更換車輛配備與快速更新車輛模組之參數。建立線傳四輪驅動與轉向車輛之實驗平台,用以實驗並驗證電動車輛於各種不同模擬條件下之作動情況並調整其設定參數之最佳化,使電動車輛擁有更高之續航力與操控性。
本項研究可整合機械、車輛與電腦資訊、控制、通訊等相關產業與學界研究單位之能量,評估分析所須之性能,同時協助工程師改善設計、縮短研發試誤及時辰。 提升國內自主車輛線傳即時四輪轉向及車體穩定控制系統研發設計能力,與世界先進技術聯結,開拓未來車用電子商機。

The purpose of this study is to establish a dynamic simulation and control system for intelligent vehicle driving and handling performance evaluation. By controlling the wheel motor drive and brake and independent steer control motor, the vehicle can have better mobility and safer handling condition. When the vehicle is straight-line driving, the slip and skid control of wheels were used to ensure the wheel torque management to has stabled drive behavior in case of wheel slip or lock conditions. The wheel speed difference, vehicle speed, yaw rate, side slip angle, and lateral acceleration during the turning maneuver conditions were used for wheel motor controller inputs for the wheel motor controller which gives commands to control each wheel speed to reduce the tire abrasive and vehicle unstable conditions.
This study has constructed the plant and controller simulation methodology which integrate the control strategies including the traction control, antilock brake control, active steer, wheel motor torque management, and the Four-Wheel Steer, (4WS) control system to evaluate and improve the vehicle drive and handling performance. The active steer control system can adjust the steer gear ratio of front and rear wheels and the ratio between them according to the vehicle speed, steering wheel angle input and the vehicle yaw rate, lateral acceleration, and side slip angle were feedbacked for closed loop control to ensure safer turning maneuver.
The by-wire controlled 4WS electric vehicle driving and handling control modules were established by using dynamic simulation program Simulink and the embedded controller Motohawk to form a Hardware-in-Loop, (HIL) environment. The control and design parameters were varied and validated under different operating conditions to assure better electric vehicle handling performance and longer cruise range.
This study can integrate and increase the research and development capability in vehicle stability control system design area including mechanical, electronic control, computer, and communication which can then in connect with the world advanced vehicle industries and enhance the competition ability in the future intelligent vehicle electronics market.

中文摘要..........................................................iii
英文摘要..........................................................v
誌謝 ..........................................................vii
目錄 ..........................................................viii
圖目錄 ..........................................................xi
表目錄 ..........................................................xvii
符號說明..........................................................xviii
第一章 緒論.......................................................1
1.1前言 .......................................................1
1.2文獻回顧 .......................................................1
1.2.1車輛動態模擬控制相關文獻..................................................... 2
1.2.2車輛線傳控制相關文獻.....................................................4
1.2.3車輛線傳四輪轉向控制相關文獻.....................................................6
1.2.4硬體迴路相關文獻.....................................................7
1.3研究動機..................................................... 10
1.4本文架構..................................................... 11
第二章 車輛動態模型建立及驗證..................................................... 12
2.1電動四輪驅動車輛縱向運動動態模.....................................................16
2.1.1車輛輸入參數模組.....................................................16
2.1.2馬達動態性能輸出模組建立.....................................................19
2.1.3電池殘電量預估模組.....................................................22
2.1.4模擬差速器輸出模組建立.....................................................23
2.2四輪轉向車輛橫擺運動動態模組.....................................................26
2.2.1輪胎滑移角模組.....................................................26
2.2.2車輛橫擺運動性能輸出模組.....................................................28
2.2.3輪胎動態性能模組.....................................................30
2.2.4前後轉向比例模組.....................................................33
2.2.5阿克曼(Ackerman)轉向幾何模組.....................................................34
2.3速度位移轉換模組.....................................................36
2.4預定路徑車速及方向盤轉角預估模組.....................................................37
2.5牽引力控制系統模組(Traction Control System,TCS)...................................39
2.6電動車輛殘電量預估模組.....................................................41
第三章 車輛模型驗證與模擬結果討論.....................................................42
3.1電動四輪驅動車輛縱向動態模組模擬.....................................................42
3.1.1模擬車輛參數設定.....................................................42
3.1.2車輛加速性能測試.....................................................43
3.1.3車輛爬坡性能測試.....................................................44
3.1.4驅動馬達效率分析.....................................................46
3.1.5電動車輛電池殘電量分析(State of Charge).....................................................50
3.2四輪轉向車輛橫擺運動動態模組模擬.....................................................53
3.2.1與商用軟體CarSimR驗證.....................................................53
3.2.2於CarSim作90km/hr變換車道(Double Lane Change,DLC)........................54
3.2.3智慧型電動車輛自動平行停車模組.....................................................67
3.2.4牽引力控制模組與電子模擬輸出差速器模組測試.....................................................72
第四章 四輪電動線傳驅動轉向硬體迴路平台.....................................................77
4.1線傳轉向平台周邊硬體與實驗設備介紹.....................................................77
4.1.1 MotoHawk硬體介紹.....................................................77
4.2硬體迴路平台架構.....................................................81
4.2.1電動車輛線傳驅動馬達硬體設備介紹.....................................................84
4.2.2電動車輛線傳轉向馬達硬體設備介紹.....................................................87
4.3驅動馬達控制程式.....................................................89
4.4轉向馬達控制程式.....................................................91
4.5實驗平台驗證.....................................................95
第五章 結論與建議.....................................................112
5.1結論.....................................................112
5.2建議事項與未來研究項目.....................................................113
參考文獻.....................................................116


[1]L. Jae-Cheon, Myung-Won. S, 「Hardware-in-the Loop Simulator for ABS/TCS,」 IEEE International Conference on Volume 1, 22-27 Aug. pp. 652 - 657 vol. 1, 1999.
[2]Q. Z. Yan, F. C. Thompson, R. E. Paul and J. J. Bielenda, 「Hardware in the Loop for Dynamic Chassis Control Algorithms Test and Validation,」 SAE Paper No.004-01-2059.
[3]K. R. Buckholtz, 「Use of Fuzzy Logic in Wheel Slip Assignment Part I: Yaw Rate Control with Sideslip Angle Limitation,」 SAE Paper No. 2002-01-1221.
[4]W. Huiyi, 「Hardware-in-the-loop Simulation for Traction Control and the Debugs of its Electric Control Unit,」 SAE Paper No. 2004-01-2056.
[5]W. Huiyi and C. Xue, 「Modelling and Simulation of Electric Stability Program for the Passenger Car,」 SAE Paper No.2004-01-2090.
[6]S. H. Zak and S. Hui, 「On variable structure output feedback controllers for uncertain dynamic systems,」 IEEE Trans. Automat. Contr., Vol. 38, pp. 1509-1512,1993.
[7]Y. W. Tsai, K.K. Shyu and K.C. Chang, 「Decentralized variable structure control for mismatched uncertain large-scale systems: a new approach,」 Systems & Control Letters, Vol. 43, No. 2, pp. 117-125, 2001.
[8]R. T. Bannatyne, 「Advances and Challenges in Electronic Braking Control Technology,」 SAE Paper No.982244,1998.
[9]A. K. ger, D. Kant and M. Buhlmann, 「Software Development Process and Software-Components for X-by-Wire Systems,」 SAE Paper No 2003-01-1288. 2003.
[10]W. D. Jonner, H. Winner, L. Dreilich, and E. Schunck, 「Electrohydraulic Brake System-The First Approach to Brake-By-Wire Technology,」 SAE Paper No. 960991,1996.
[11]B. Hedenetz and R. Belschner, 「Brake-by-Wire Without Mechanical Backup by Using a TTP-Communication Network,」 SAE Paper No. 981109,1998.
[12]K. Bill, M. Semsch and B. Breuer, 「A New Approach to Investigate the Vehicle Interface Driver /Brake Pedal Under Real Road Conditions in View of Oncoming Brake-by-wire-systems,」 SAE Paper No.1999-01-2949,1999.
[13]C. Ebnar, 「BMW Technical Reports,」 pp.1~13,2000.
[14]http://www.HONDA.com.
[15]Y. Kozaki, G. Hirose, S. Sekiya and Y. Miyaura, 「 Electric Power Steering(EPS),」 Steering Technology Department, Automotive Technology Center, Motion &Control No.6, pp.9~ 15,1999.
[16]http://www.delphiauto.com.
[17]http://global.www.mitsubishielectric.com.
[18]M. Eckrich, W. Baumgartner, et al., 「BMW New Steering System」, 2001.
[19]K. Yoshida, M. Nishimoto, 「Elctric Power Steering Apparatus」, US Patent Number: 6,129,172, 2000.
[20]A. Kade, S. M. Karadsheh, 「Adaptive Controller for Electric Power Steering」, US Patent Number: 4,509,611,1985.
[21]T. Kada, S. Nakano, 「Electric Power Steering System,」 US Patent Number: 6,382,345B2,2002.
[22]Y. Mukai, Y. Noro, S. Hironaka, 「Electric Power Steering Device」, US Patent Number: 5,844,387,1998.
[23]G. R. Babbitt and J. J. Moskwa, 「Implementation Details and Test Results for a Transient Engine Dynamometer and Hardware In the Loop Vehicle Model,」 IEEE 90 Internation Symposium on Computer-Aided Control System Design, Kohala Coast-Island of Hawaii, August, pp.596-574,1999.
[24]R. Isermann, A. Monti and R. A. Dougal 「Hardware-in-the-Loop simulation for the design and testing of engine-control systems,」 Control Engineering Practice, Vol. 7, pp.643-653,1999.
[25]J. Li, Fan F and Z. Jianwu, 「The Rapid Develoment of Vehicle Electronic Control System by Hardware In The Loop Simulation,」 SAE paper No.2002-01-0568,2002.
[26]T. Kowatari, S. Tokumoto and T. Usui, 「Optimization of an Electronic Throttle Control Actuator for Gasoline Direct In- jection Engines,」 SAE paper No. 1999-01-0542,1999.
[27]P. I. H. Lin, S. Hwang and J. Chou, 「Comparison on fuzzy logic and PID Controls for a DC Motor Position Controller,」 IEEE, 0-7803-1993-1/94,1994.
[28]R. Isermann, A. Monti and R. A. Dougal, 「Hardware-in-the-Loop simulation for the design and testing of engine-control systems,」 Control Engineering Practice, pp.643-653, 1998.
[29]Thomas D. Gillespie, 「Fundamentals of Vehicle Dynamics,」Society of Automotive Engineers, Inc., 1992.
[30]J. Y. Wong, 「THEORY OF Ground Vehicles,」 Third Edition.
[31]嚴豪緯,「泛用型車輛電子控制單元發展平台之研製」,大葉大學碩士論文,2005。
[32]T. Shim, D. Toomey, 「Investigation of active steering/wheel torque control at the rollover limit maneuver,」 SAE Paper No.2004-01-2097,2004.
[33]謝曜兆,「應用車內網傳輸於電子節氣門控制之研究」,大葉大學車輛工程研究所碩士論文,2006。
[34]Q. Z. Yan, F. C. Thompson, R. E. Paul and J. J. Bielenda, 「Hardware in the Loop for Dynamic Chassis Control Algorithms Test and Validation,」 SAE Paper No. 2004-01-2059, 2004.
[35]方毓敏,「線傳電子節氣門控制實驗之硬體迴路模擬分析,」大葉大學車輛工程研究所碩士論文,2008。
[36]游鈞敦,「車輛線傳橫向穩定控制系統之整合硬體迴路分析研究,」大葉大學車輛工程研究所碩士論文,2008。
[37]L. J. Cheon, W. S. Myung, 「Hardware-in-the Loop Simulator for ABS/TCS,」 IEEE, pp. 652-657, 1999.
[38]Q. Z. Yan, F. C. Thompson, R. E. Paul and J. J. Bielenda, 「Hardware in the Loop for Dynamic Chassis Control Algorithms Test and Validation,」 SAE Paper No. 2004-01-2059, 2004.
[39]莊辛富,「引擎噴油與點火控制微電腦之快速成型技術研究,」國立台北科技大學車輛工程研究所碩士論文,2003。
[40]張一屏、紀彥琦、廖建智、洪秉賢、羅民芳,「四輪轉向系統轉向參數對車輛操控性能影響之研究,」 第二十六屆中國機械工程研討會,2009年。
[41]張一屏、紀彥琦、廖建智、洪秉賢,「車輛四輪獨立轉向系統動態模擬之研究,」 第一十四屆車輛工程學術研討會,2009年。
[42]張一屏、紀彥琦、廖建智、洪秉賢,「車輛線傳四輪電控轉向 系統模擬測試之研究,」 第一十四屆車輛工程學術研討會,2009年。
[43]M.G. Daniel and P.D. Timothy, 「Engineering, Quality and Experimental Design,」 Longman Scientific & Technical. London, 1992.
[44]G.P. Roger., 「Design and Analysis of Experiments,」 Marcel Dekker Inc. New York,1985.
[45]G. E. P.Box, and J. S. Hunter, 「Multifactor Experimental Designs for Exploring Response Surfaces,」 Ann. Math. Stat. 28, pp.195-241,1957.
[46]G. E. P.Box, and K. B. Wilson, 「On the Experimental Attainment of Optimum Conditions,」 J. R. Stat. Soc. B 13, pp. 1-45, 1951.
[47]R. H.Myers, 「Response Surface Methodology,」 Allyn & Bacon, Boston, 1971.
[48]劉晏誠,「車輛線傳電控轉向系統模擬測試之研究,」 大葉大學車輛工程研究所碩士論文,2009。
[49]紀彥琦,「線傳智慧型車輛驅動與操控動態模擬及控制之研究,」 大葉大學車輛工程研究所碩士論文,2010。
[50]黃治瑋,「應用於模組化輕型電動車之類神經網路控制六相永磁馬達驅動系統,」國立中央大學電機工程學系碩士論文,2010。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔