跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉子綺
研究生(外文):Tzu-Chi Liu
論文名稱:合成高表面積P/TiO2及應用於染料敏化太陽能電池之製備與分析
論文名稱(外文):Preparation of High Surface Area Phosphorus Doped TiO2 for Dye Sensitized Solar Cell
指導教授:張振昌
指導教授(外文):Alex C.-C. Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:高表面積磷修飾二氧化鈦
外文關鍵詞:titaniahigh surface areap-doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶膠-凝膠法結合水熱法並搭配模板劑製備奈米二氧化鈦,以Ti(OBu)4作為氧化鈦前驅物及磷酸做為磷摻雜物來源、溴化十六烷基三甲基銨為界面活性劑,並測詴有無界面活性劑的加入、改變磷酸莫爾比、pH值等不同製程參數來合成孔洞及高表面積之二氧化鈦。在觸媒特性分析上使用熱重分析儀(TGA)、X-ray粉末繞射儀(XRD)、比表面積分析儀(BET)、高解晰可變真空掃描式電子顯微鏡及能量散佈光譜儀(VVSEM&EDX)分別進行樣品的熱穩定性分析、晶體晶相分析、表面積大小分析、孔洞結構分析、表面型態及材料表面元素分布分析。樣品活性是以連續亞甲藍照光降解實驗檢測光活性及計算其反應速率,最後再以合成樣品進行組裝染料敏化電池與測詴。
實驗結果顯示在本研究中以磷修飾氧化鈦合成之樣品晶相接近商用觸媒Hombikat UV100銳鈦礦,加界面活性劑可以再提升樣品表面積,且當P/Ti莫爾比越高時,樣品漸呈無晶相。合成樣品中最高表面積為有添加模板劑且晶相特徵較明顯的P/Ti=0.20時254.1m2/g、孔洞體積0.52 cm2/g、帄均孔隙8.0nm、晶粒大小6.59nm;整體亞甲藍活性P/Ti=0.10有最高的反應速率0.234 min-1,P/Ti=0.15為次之0.203 min-1。目前詴用商用觸媒及樣品電池組裝與I-V curve測量皆在V=0時量測出來的電流值I=0,因此封裝上的技術待改善。
摘要 .............................................................................................................. I
Abstract ........................................................................................................ II
目錄 ........................................................................................................... IV
圖目錄 ...................................................................................................... VII
表目錄 ...................................................................................................... XII
第一章 前言 ............................................................................................... 1
第二章 原理及文獻回顧 ......................................................................... 2
2-1 太陽能電池簡介 ........................................................................ 2
2-1-1 矽太陽能電池 .................................................................. 6
2-1-2 多化合物太陽能電池 ...................................................... 7
2-1-3 新型太陽能電池 .............................................................. 9
2-1-4 染料敏化太陽能電池 .................................................... 10
2-1-5 各太陽能電池比較 ........................................................ 15
2-2 光觸媒原理及應用 .................................................................. 17
2-2-1 光觸媒種類 .................................................................... 18
2-2-2 二氧化鈦介紹 ................................................................ 19
2-2-3 二氧化鈦摻雜物 ............................................................ 22
2-2-4 二氧化鈦摻磷 ................................................................ 25
2-3 孔洞材料 .................................................................................. 26
2-3-1 界面活性劑 .................................................................... 26
2-3-2 界面活性劑水溶液之特性 ............................................ 27
2-3-3 中孔洞材料 .................................................................... 28
2-3-4 MCM-41 ......................................................................... 30
2-4 奈米微粒合成 .......................................................................... 31
2-4-1 氣、液、固相法簡介 .................................................... 31
2-4-2 液相法合成奈米微粒 .................................................... 32
2-4-3 溶膠-凝膠法 .................................................................. 36
2-4-4 水熱法 ............................................................................ 37
2-5 亞甲藍降解反應 ...................................................................... 39
第三章 實驗方法與步驟 ....................................................................... 41
3-1 實驗藥品與儀器 ...................................................................... 41
3-2 實驗步驟及方法 ...................................................................... 43
3-2-1 以磷修飾二氧化鈦之合成 ............................................ 44
3-2-2 亞甲藍光降解活性分析 ................................................ 44
3-2-3 電池組裝 ........................................................................ 46
3-3 特性分析 .................................................................................. 49
3-4-1 熱重分析(TGA) ............................................................. 49
3-4-2 X光粉末繞射(XRD) ..................................................... 49
3-4-3 等溫氮氣吸脫附分析(BET) ......................................... 51
3-4-4 掃描式電子顯微鏡(SEM) ............................................. 53
3-4-5 紫外-可見光光譜儀(UV-Vis) ....................................... 54
第四章 實驗結果與討論 ....................................................................... 55
4-1 光觸媒合成製備參數與結果分析 .......................................... 55
4-1-1 以磷修飾氧化鈦之合成 ................................................ 55
4-1-2 以磷修飾氧化鈦並搭配CTMABr之合成 .................. 63
4-1-3 酸鹼值的影響 ................................................................ 73
4-2 亞甲藍光降解活性分析 .......................................................... 79
4-2-1 亞甲藍檢量線 ................................................................ 79
4-2-2 亞甲藍反應速率計算 .................................................... 81
4-3 太陽電池組裝 .......................................................................... 83
4-3-1 葉綠素染料 .................................................................... 83
4-3-2 染料敏化太陽能電池組裝 ............................................ 86
第五章 結果與討論 ............................................................................... 88
第六章 未來與展望 ............................................................................... 90
附錄 ........................................................................................................... 91
附錄A 實驗儀器及裝置 ............................................................... 91
附錄B XRD晶格 .......................................................................... 96
附錄C 氧化鈦JCPDS ................................................................... 97
附錄D 商用型光觸媒(Degussa P 25) ........................................... 98
附錄E 商用型光觸媒(Hombikat UV 100) ................................... 99
附錄F BET 吸/脫附等溫曲線的形式[87] .................................. 100
參考文獻 ................................................................................................. 104
1. 陳富亮. 最新奈米光觸媒應用技術. 2003: 普林斯頓國際有限公司.
2. 黃惠良、曾百亨. 太陽電池. 2008: 五南圖書出版股份有限公司.
3. http://solarpower.e-bookz.info/?p=80
4. Martin A. Green Stuart R Wenham, Muriel E. Watt, Richard Corkish. 應用太陽電池. 2009: 五南圖書出版股份有限公司.
5. 林明獻. 太陽電池技術入門. 2007,11月: 全華圖書公司.
6. 中華太陽能聯誼會, 認識太陽能電池. 2009,4月.
7. 楊素華蔡泰成. 太陽能電池. 科技發展; 2005,6月;390期.
8. 李雯雯王孟傑. 薄膜太陽能電池技術發展潛力分析. 2007, 新竹縣: 工業技術研究院.
9. Y. Hagiwara, T. NakadaA. Kunioka. Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer. Solar Energy Materials and Solar Cells; 2001;67(1-4):267-271.
10. H. Tsubomura, M. Matsumura, Y. NomuraT. Amamiya. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature; 1976;261(5559):402-403.
11. Brian O''ReganMichael Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature; 1991;353(6346):737-740.
12. 方良卲等, 2010年能源瓹業技術白皮書, 經濟部能源局,財團法人中衛發展中心編輯, Editor. 2010,April, 經濟部能源局.
13. A. Coehn. Ber. Deutsch. Chem. Gesellschaft; 1910;43:880-880.
14. Akira FujishimaKenichi Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature; 1972;238(5358):37-38.
15. Michael Gratzel. Photoelectrochemical cells. Nature; 2001;414(6861):338-344.
16. Relva C. BuchananTaeun Park. Materials Crystal Chemistry. 1997: New York:Marcel Dekker.
17. Ulrike Diebold. The surface science of titanium dioxide. Surface Science Reports; 2003;48(5-8):53-229.
18. O. Carp, C. L. HuismanA. Reller. Photoinduced reactivity of
titanium dioxide. Progress in Solid State Chemistry; 2004;32(1-2):33-177.
19. 張立德牟季美. 奈米材料和奈米結構. 2001, 北京: 科學出版社.
20. Shinri Sato. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters; 1986;123(1-2):126-128.
21. R. Asahi, T. Morikawa, T. Ohwaki, K. AokiY. Taga. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science; 2001;293(5528):269-271.
22. Shanmugasundaram SakthivelHorst Kisch. Photocatalytic and Photoelectrochemical Properties of Nitrogen-Doped Titanium Dioxide. ChemPhysChem; 2003;4(5):487-490.
23. Ming Shen, Zunyi Wu, Hui Huang, Yukou Du, Zhigang ZouPing Yang. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters; 2006;60(5):693-697.
24. Jimmy C. Yu, Wingkei Ho, Jiaguo Yu, Hoyin Yip, Po Keung WongJincai Zhao. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environmental Science & Technology; 2005;39(4):1175-1179.
25. Hua Yu, Xin-Jun Li, Shao-Jian ZhengWei Xu. Photocatalytic activity of TiO2 thin film non-uniformly doped by Ni. Materials Chemistry and Physics; 2006;97(1):59-63.
26. Yan Wang, Zhao-Hua JiangFeng-Jie Yang. Effect of Fe-doping on the pore structure of mesoporous titania. Materials Science and Engineering: B; 2006;134(1):76-79.
27. Andrei Ghicov, Bernd Schmidt, Julia KunzePatrik Schmuki. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters; 2007;433(4-6):323-326.
28. Kaijian Zhang, Wei Xu, Xinjun Li, Shaojian ZhengGang Xu. Effect of dopant concentration on photocatalytic activity of TiO2 film doped by Mn non-uniformly. Central European Journal of Chemistry; 2006;4(2):234-245.
29. Yue-hua Xu, Huo-rong Chen, Zhuo-xian ZengBo Lei. Investigation on mechanism of photocatalytic activity enhancement of nanometer cerium-doped titania. Applied Surface Science; 2006;252(24):8565-8570.
30. Shahed U. M. Khan, Mofareh Al-ShahryWilliam B. Ingler. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science; 2002;297(5590):2243-2245.
31. Yongling Li, Linda Hou, Annika AktivAnnica Dahlström. Immunohistochemical characterisation of differentiated CAD cells: expression of peptides and chromogranins. Histochemistry and Cell Biology; 2005;124(1):25-33.
32. T. Ohno, T. MitsuiM. Matsumura. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters; 2003;32(4):364-365.
33. T. Umebayashi, T. Yamaki, H. ItohK. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters; 2002;81(3):454-456.
34. T. Umebayashi, T. Yamaki, S. TanakaK. Asai. Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters; 2003;32(4):330-331.
35. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. Journal of Applied Physics; 2003;93(9):5156-5160.
36. H. Irie, Y. WatanabeK. Hashimoto. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chemistry Letters; 2003;32(8):772-773.
37. Qiujing Yang, Chao Xie, Zili Xu, Zhongmin GaoYaoguo Du. Synthesis of Highly Active Sulfate-Promoted Rutile Titania Nanoparticles with a Response to Visible Light. The Journal of Physical Chemistry B; 2005;109(12):5554-5560.
38. Teruhisa Ohno, Miyako Akiyoshi, Tsutomu Umebayashi, Keisuke Asai, Takahiro MitsuiMichio Matsumura. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General; 2004;265(1):115-121.
39. Ohno T., Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities, in Water Science and Technology. 2004:159-163.
40. Jimmy C. Yu, Lizhi Zhang, Zhi ZhengJincai Zhao. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials; 2003;15(11):2280-2286.
41. La´szlo´ Ko¨ro¨si, Szilvia Papp, BImre Berto´tiImre De´ka´ny. Surface and Bulk Composition, Structure, and Photocatalytic Activity of Phosphate-Modified TiO2. Chemistry of Materials; 2007;19(19):4811-4819.
42. G. Col´on, J.M. S´anchez-Espa˜na, M.C. HidalgoJ.A. Nav´ıo. Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry; 2006;179(1-2):20-27.
43. Qing Shi, Dong Yang, Zhongyi JiangJian Li. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic; 2006;43(1-4):44-48.
44. L. Lin, W. Lin, J. L. Xie, Y. X. Zhu, B. Y. ZhaoY. C. Xie. Photocatalytic properties of phosphor-doped titania nanoparticles. Applied Catalysis B: Environmental; 2007;75(1-2):52-58.
45. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. VartuliJ. S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature; 1992;359(6397):710-712.
46. Zhong Yong Yuan, Shu Quan Liu, Tie Hong Chen, Jing Zhong WangHe Xuan Li. Synthesis of iron-containing MCM-41. Journal of the Chemical Society, Chemical Communications; 1995(9):973-974.
47. Peter T. Tanev, Malama ChibweThomas J. Pinnavaia. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature; 1994;368(6469):321-323.
48. A. Corma, M. T. NavarroJ. Perez Pariente. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society, Chemical Communications; 1994(2):147-148.
49. Zhaohua Luan, Jie Xu, Heyong He, Jacek KlinowskiLarry Kevan. Synthesis and Spectroscopic Characterization of Vanadosilicate Mesoporous MCM-41 Molecular Sieves. The Journal of Physical Chemistry; 1996;100(50):19595-19602.
50. Kondam Madhusudan Reddy, Igor MoudrakovskiAbdelhamid Sayari. Synthesis of mesoporous vanadium silicate molecular sieves. Journal of the Chemical Society, Chemical Communications; 1994(9):1059-1060.
51. Dongyuan ZhaoDaniella Goldfarb. Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L. Journal of the Chemical Society, Chemical Communications; 1995(8):875-876.
52. D. J. Jones, J. Jimenez-Jimenez, A. Jimenez-Lopez, P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon. Surface characterisation of zirconium-doped mesoporous silica. Chemical Communications; 1997(5):431-432.
53. N. UlagappanC. N. R. Rao. Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41. Chemical Communications; 1996(9):1047-1048.
54. Abdelhamid SayariPing Liu. Non-silica periodic mesostructured materials: recent progress. Microporous Materials; 1997;12(4-6):149-177.
55. David M. AntonelliJackie Y. Ying. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method. Angewandte Chemie International Edition in English; 1995;34(18):2014-2017.
56. Michael S. WongJackie Y. Ying. Amphiphilic Templating of Mesostructured Zirconium Oxide. Chemistry of Materials; 1998;10(8):2067-2077.
57. M. ThiemeF. Schüth. Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route. Microporous and Mesoporous Materials; 1999;27(2-3):193-200.
58. Ulrike Ciesla, Michael Fröba, Galen StuckyFerdi Schüth. Highly Ordered Porous Zirconias from Surfactant-Controlled Syntheses:??Zirconium Oxide?ulfate and Zirconium Oxo Phosphate. Chemistry of Materials; 1999;11(2):227-234.
59. Anatoly Bortun, Enrique Jaimez, Ricardo Llavona, Jos嬙 Garc燰Julio Rodr璲uez. Formation of crystalline titanium(IV) phosphates from titanium(III) Solutions. Materials Research Bulletin; 1995;30(4):413-420.
60. A. ClearfieldJ. A. Stynes. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. Journal of Inorganic and Nuclear Chemistry; 1964;26(1):117-129.
61. A. N. Christensen, E. Krogh Andersen, I. G. Krogh Andersen, G. Alberti, M. NielsenM. S. Lehmann. X-ray powder diffraction study of layer compounds. The crystal structure of ?Ti(HPO4)2.H2O and a proposed structure for γ-Ti(H2PO4)(PO4).2H2O. . Acta Chemica Scandinavica. Series A, Physical and Inorganic Chemistry; 1990;44(9):865-872.
62. Pascual Olivera-Pastor, Pedro Maireles-Torres, Enrique Rodrı´guez-Castello´nAntonio Jime´nez-Lo´pez. Nanostructured Inorganically Pillared Layered Metal(IV) Phosphates. Chemistry of
Materials; 1996;8(8):1758-1769.
63. Damodara M. Poojary, Anatoly I. Bortun, Lyudmila N. BortunAbraham Clearfield. Synthesis and X-Ray Powder Structures of Three Novel Titanium Phosphate Compounds. Journal of Solid State Chemistry; 1997;132(1):213-223.
64. Yuri Bereznitski, Mietek Jaroniec, Anatoly I. Bortun, Damodara M. PoojaryAbraham Clearfield. Surface and Structural Properties of Novel Titanium Phosphates. Journal of Colloid and Interface Science; 1997;191(2):442-448.
65. Anatoly I. Bortun, Lyudmila Bortun, Abraham Clearfield, Mar´ıa A. Villa-Garc´ıa, Jos´e R. Garc´ıaJulio Rodr´ıguez. Synthesis and characterization of a novel layered titanium phosphate. Journal of MATERIALS RESEARCH; 1996;11(10):2490-2498.
66. Anatoly I. Bortun, Sergei A. Khainakov, Lyudmila N. Bortun, Damodara M. Poojary, Julio Rodriguez, Jose R. Garcia. Synthesis and Characterization of Two Novel Fibrous Titanium Phosphates Ti2O(PO4)2·2H2O. Chemistry of Materials; 1997;9(8):1805-1811.
67. S. EkambaramS. C. Sevov. Organically Templated Mixed-Valent Titanium Phosphates With Open Framework Structures: Hydrothermal Synthesis and Characterization. 1999;38:372.
68. Zhong-Yong YuanBao-Lian Su. Insights into hierarchically meso-macroporous structured materials. Journal of Materials Chemistry; 2006;16(7):663-677.
69. Xinchen Wang, Jimmy C. Yu, Chunman Ho, Yidong HouXianzhi Fu. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania. Langmuir; 2005;21(6):2552-2559.
70. Deborah J. Jones, G. Aptel, Markus Brandhorst, Melanie Jacquin, Jose Jimenez-Jimenez, Antonio Jimenez-Lopez. High surface area mesoporous titanium phosphate: synthesis and surface acidity determination. Journal of Materials Chemistry; 2000;10(8):1957-1963.
71. Asim BhaumikShinji Inagaki. Mesoporous Titanium Phosphate Molecular Sieves with Ion-Exchange Capacity. Journal of the American Chemical Society; 2001;123(4):691-696.
72. Ioan-Cezar Marcu, Ioan SandulescuJean-Marc M. Millet. Effects of the method of preparing titanium pyrophosphate catalyst on the structure and catalytic activity in oxidative dehydrogenation of n-butane. Journal of Molecular Catalysis A: Chemical; 2003;203(1-2):241-250.
73. Krishanu Sarkar, Subhash Chandra Laha, Nawal Kishor MalAsim
Bhaumik. A porous open-framework titanium oxophenylphosphate. Journal of Solid State Chemistry; 2008;181(8):2065-2072.
74. K. Joseph Antony Raj, A. V. RamaswamyB. Viswanathan. Surface Area, Pore Size, and Particle Size Engineering of Titania with Seeding Technique and Phosphate Modification. The Journal of Physical Chemistry C; 2009;113(31):13750-13757.
75. Céline Bodson, Stéphanie Lambert, Christelle Alié, Xavier Cattoën, Jean-Paul Pirard, Catherine Bied. Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-doped TiO2 materials. Microporous and Mesoporous Materials; 2010;134(1-3):157-164.
76. Traube. J. Annalne Chemie; 1891;265:27-55.
77. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society; 1992;114(27):10834-10843.
78. 王世敏,許祖勛博晶.奈米材料原理與製備. 2004: 五南圖書出版股份有限公司.
79. 高廉. 奈米光觸媒. 2004: 五南出版社.
80. Brian L. BischoffMarc A. Anderson. Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2). Chemistry of Materials; 1995;7(10):1772-1778.
81. http://www.bio.fju.edu.tw/excel/content06/detail/193x/1930.htm
82. J.F.G.M.WintermansA.De Mots. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et biophysica acta; 1965;109:448-453.
83. 蘇彥勳, 金奈米粒子形成蕭基式能障用於染料敏化太陽能電池, in 材料科學及工程學系. 1997, 國立成奶j學.
84. Tsunenori Nozawa, Mitsuo Umetsu, Zheng-Yu WangMasayuki Kobayashi. Interaction of photosynthetic pigments with various organic solvents Magnetic circular dichroism approach and application to chlorosomes. Biochimica et Biophysica Acta; 1999(1410):19-31.
85. cooperation with the American Ceramic Society, Joint Committee on Powder Diffraction Standards International Centre for Diffraction Data, in Hanawlt Method Inorganic. 1991.
86. N.-G. Park, G. Schlichtholrl, J. van de Lagemaat, H. M.Cheong, A. MascarenhasA. J. Frank. J. Phys. Chem. B; 1999(103):3308.
87. Kenneth S. W. Sing, Douglas H. Everett, R. A. W. Haul, L. Moscou, Robert A. Pierotti, Jean Rouquerol. Reporting Physisorption Data
for Gas/Solid Systems. Handbook of Heterogeneous Catalysis. 2008: Wiley-VCH Verlag GmbH & Co. KGaA.
88. 顧惕人, 李外郎, 馬季銘, 戴樂蓉, 程虎民朱步搖. 表面化學, ed. 科學出版社. 1999, 北京.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top