跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴俊宏
研究生(外文):Chun-hung Lai
論文名稱:陽極沉積法製備釩氧化物之電容器特性研究
論文名稱(外文):Investigations in Supercapcitive Performance of Vanadium Oxide Prepared by Anodic Deposition Technique
指導教授:林中魁張仍奎
指導教授(外文):Chung-kwei LinJeng-kuei Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:陽極沉積氧化釩釩氧化物超級電容器
外文關鍵詞:SupercapcitiveSupercapacitorAnodic depositionVanadium oxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以硫酸氧釩作陽極沉積法之鍍液,並在溶液中添加等濃度的醋酸、醋酸鋰、醋酸鈉以及醋酸鉀,以定電位0.65、1.00、1.40 與1.80 V 沉積釩氧化物薄膜於石墨基材,並對此薄膜電極進行XRD、EDS、XAS、SEM 與電化學特性之分析。研究結果顯示,藉由添加不同種類的醋酸鹽類與沉積電位的改變,可控制釩氧化物薄膜之結晶性、組成、表面形貌與電容特性等,實驗結果發現添加醋酸鋰、醋酸鈉與醋酸鉀其效果較為明顯。
  隨添加醋酸鋰、醋酸鈉與醋酸鉀,其有序化程度隨添加陽離子尺寸之增加而降低;此外,其平面間距也依此趨勢下降,亦由RDF 中發現隨陽離子尺寸之上升,縮短V-O 與V-V 之鍵長;在表面形貌方面,由連續之平坦薄膜逐漸轉為3D 網狀之奈米結構。
  同樣經硫酸氧釩中添加醋酸鋰、醋酸鈉與醋酸鉀之鍍液製備而得之樣品,可由不同沉積電位控制釩氧化物之結晶性、組成、表面形貌,當電位由0.65 V往高電位1.80 V 進行陽極沉積時,XRD 之繞射峰隨之降低,而添加之陽離子與釩兩者的比例,隨低電位至高電位以近乎線性之增加;在薄膜表面上則循電位提高後,由原本凹凸不平或網狀之結構轉為平坦、團聚或彼此糾結之形貌。
  以定電量1 庫倫製備而得之釩氧化物薄膜電極,經循環伏安檢測後,其比電容值與重量有密切之關係;當薄膜之沉積重量皆為1 毫克時,比電容值隨陽離子尺寸之增加而降低,而以添加醋酸鉀於0.65 V 沉積之釩氧化物薄膜有最佳電容特性,在測試環境為3 M KCl (pH 2.4)且掃描速率為5 mV/s 時,比電容值可達191.86 F/g;此外,在掃描速率為200 mV/s 時,其比電容值仍可保有119.21
F/g。
  Vanadium oxide was anodically deposited onto graphite substrates at an applied voltage of 0.65, 1.00, 1.40 ,1.80 V from aqueous solutions containing 0.2M VOSO4 with CH3COOH, CH3COOLi, CH3COONa and CH3COOK, respectively. The as-deposited electrodes were analyzed by XRD, EDS, XAS, SEM and electrochemical methods. The results showed that by the addition of different kinds of acetate and the change of deposition potential, the crystalline, composition, surface morphology, and capacity properties of vanadium oxide can be controlled. There were evident effects when CH3COOLi, CH3COONa and CH3COOK were added.
  With the addition of lithium acetate, sodium acetate and potassium acetate, the degree of order and planar spacing decreased as the size of cations increased. As the cations size increased, the reduction of the bond length of V-O and V-V were observed. Whereas in surface morphology, the continuous flat film was transformed into a 3D mesh nano-structure.
  By the addition of lithium acetate, sodium acetate and potassium acetate into vanadyl sulfate solution, the crystalline, composition, surface morphology, of vanadium oxide can be controlled under different deposition potentials. As anodic deposition potential changed from 0.65V to 1.80V, the intensities of XRD peaks decreased. The ratio of cation to V increased linearly with increasing potential. Meanwhile, the surface of the film exhibited an uneven network structure at low potential and gradually became smooth with increasing potential.
  The vanadium oxide electrode was prepared by anodic deposition with a total passed charge of 1 C. After the CV test, its capacitance value had close relationship with the deposition weight. As the deposition weight was 1 mg, the cation size increased with capacitance values decreased. Whereas, the addition of potassium acetate during deposition under 0.65V potential had the best capacitance of 191.86 F/g, under 3 M KCl (pH 2.4) electrolyte at a scan rate of 5 mV/s. Even with a scan rate of 200 mV/s, its specific capacitance can still be 119.21 F/g.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 3
2.1釩氧化物之簡介 3
2.2 超級電容器 6
2.3 氧化釩電容器電極製程 9
2.3.1 氧化法 9
2.3.2 溶膠凝膠法 10
2.3.3 共析法 10
2.3.4 淬火法 11
2.3.5 熱解法 11
2.3.6 噴霧造粒法 12
2.3.7 水熱法 12
2.3.8 電化學法 13
第三章 實驗方法 23
3.1 釩氧化物薄膜電極之製備 23
3.1.1 電極基材之前處理 24
3.1.2 陽極沉積釩氧化物薄膜 24
3.2 釩氧化物薄膜電極之分析 25
3.2.1 結構分析 25
3.2.2 表面形貌與元素含量分析 25
3.2.3 同步輻射之吸收光譜分析 25
3.3電化學特性之分析 26
3.3.1 動電位掃描 26
3.3.2 電容特性評估 26
第四章 結果與討論 29
4.1 陽極沉積釩氧化物薄膜電極 29
4.1.1動電位掃描 29
4.1.2 定電位定電量下製備釩氧化物薄膜電極 31
4.2 釩氧化物薄膜電極之性質檢測 36
4.2.1 晶體結構分析 36
4.2.2 成份分析 40
4.2.3 同步輻射檢測 41
4.2.4 表面形貌分析 43
4.3 釩氧化物薄膜電極之電容特性檢測 49
4.3.1 定電量1庫倫之電容特性 49
4.3.2 定重量1毫克之電容特性 56
4.3.3 不同掃描速率對釩氧化物薄膜電容特性之影響 58
4.4 釩氧化物薄膜電極之循環壽命檢測 62
第五章 結論 66
第六章 未來研究方向 67
參考文獻 68
附錄 75
附錄A:SV+K (0.65 V)重量與電容值關係 75
附錄B:硫酸氧釩添加過氧化氫製備釩氧化物電極與其電容特性 76
附錄C:陽極沉積釩氧化物於ITO基材及其電容特性 80
1 P. Kurzweil, “Electrochemical Double-Layer Capacitors”, Encyclopedia of Electrochemical Power Sources, (2009) 607-633.
2 R. K?尒z and M. Carlen, “Principles and Applications of Electrochemical Capacitors”, Electrochimica Acta, 45 (2000) 2483-2498.
3 I. Tanahashi, A. Yoshida, and A. Nishino, “Preparation, and Characterization of Activated Carbon Tablets for Electric Double-layer Capacitors”, Bulletin of the Chemical Society of Japan, 63 (1990) 2755-2758.
4 H.A. Andreas and B.E. Coneay, “Examination of the Double-Layer Capacitance of an High Specific-area C-cloth Electrode as Titrated from Acidic to Alkaline pHs”, Electrochimica Acta, 51 (2006) 6510-6520.
5 B. E. Conway, “Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage”, Journal of the Electrochemical Society, 138 (1991) 1539-1548.
6 H. Kim and B.N. Popov, “Characterization of Hydrous Ruthenium Oxide/Carbon Nanocomposite Supercapacitors Prepared by a Colloidal Method”, Journal of Power Sources, 104 (2002) 52-61.
7 A.M. Tripathi, R.G. Nair, and S.K. Samdarshi, “Visible Active Silver Sensitized Vanadium Titanium Mixed Metal Oxide Photocatalyst Nanoparticles Through Sol-gel Technique”, Solar Energy Materials and Solar Cells, 94[12] (2010) 2379-2385.
8 X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li, M. Huo, and Y. Guo, “Mixed Phase Titania Nanocomposite Codoped with Metallic Silver and Vanadium Oxide: New Efficient Photocatalyst for Dye Degradation”, Journal of Hazardous Materials, 175[1-3] (2010) 429-438.
9 A.V. Grigorieva, S.M. Badalyan, E.A. Goodilin, M.N. Rumyantseva, A.M. Gaskov, A. Birkner, and Y.D. Tretyakov, “Synthesis, Structure, and Sensor Properties of Vanadium Pentoxide Nanorods”, European Journal of Inorganic Chemistry, [33] (2010) 5247-5253.
10 S. Santangelo, G. Messina, G. Faggio, M.G. Willinger, N. Pinna, A. Donato, A. Arena, N. Donato, and G. Neri, “Micro-Raman Investigation of Vanadium-oxide Coated Tubular Carbon Nanofibers for Gas-sensing Applications”, Diamond and Related Materials, 19[5-6] (2010) 590-594.
11 S. Songara, M.K. Patra, M. Manoth, L. Saini, V. Gupta, G.S. Gowd, S.R. Vadera, and N. Kumar, “Synthesis and Studies on Photochromic Properties of Vanadium Doped TiO2 Nanoparticles”, Journal of Photochemistry and Photobiology A, 209 (2010) 68-73.
12 J.B. Kana Kana, J.M. Ndjaka, B.D. Ngom, N. Manyala, O. Nemraoui, A.Y. Fasasi, R. Nemutudi, A. Gibaud, D. Knoesen, and M. Maaza, “Thermochromic Nanocrystalline Au-VO2 Ccomposite Thin Films Prepared by Radiofrequency Inverted Cylindrical Magnetron Sputtering”, Thin Solid Films, 518[6] (2010) 1641-1647.
13 N.R. Mlyuka, G.A. Niklasson, and C.G. Granqvist, “Thermochromic VO2-based Multilayer Films with Enhanced Luminous Transmittance and Solar Modulation”, Physical Status Solidi A, 206[9] (2009) 2155-2160.
14 C. Xiong, A.E. Aliev, B. Gnade, and K.J. Balkus, “Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics”, ACS Nano, 2[2] (2008) 293-301.
15 Y.S. Lin, C.W. Tsai, and P.W. Chen, “Electrochromic Properties of V2O5-z Thin Films Sputtered onto Flexible PET/ITO Substrates”, Solid State Ionics, 179[7-8] (2008) 290-297.
16 K.C. Cheng, F.R. Chen, and J.J. Kai, “V2O5 Nanowires as a Functional Material for Electrochromic Device”, Solar Energy Materials and Solar Cells, 90[7-8] (2006) 1156-1165.
17 T. Kudo, Y. Ikeda, and T. Watanabe, “Amorphous V2O5/Carbon Composites as Electrochemical Supercapacitor Electrodes”, Solid State Ionics, 152 (2002) 833-841.
18 T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. B?翼anger,“Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors”, Applied Physics A, 82[4] (2006) 599-606.
19 Z.J. Lao, K. Konstantinov, Y. Tournaire, S.H. Ng, G.X. Wang, and H.K. Liu,“Synthesis of Vanadium Pentoxide Powders with Enhanced Surface-area for Electrochemical Capacitors”, Journal of Power Sources, 162 (2006) 1451-1454.
20 H.M. Zeng, Y. Zhao, Y.J. Hao, Q.Y. Lai, J.H. Huang, and X.Y. Ji, “Preparation and Capacitive Properties of Sheet V6O13 for Electrochemical Supercapacitor”, Journal of Alloys and Compounds, 477 (2009) 800-804.
21 B. Wanga, K. Konstantinov, D. Wexler, H. Liu, and G.X. Wang, “Synthesis of Nanosized Vanadium Pentoxide/carbon Composites by Spray Pyrolysis for Electrochemical Capacitor Application”, Electrochimica Acta, 54 (2009) 1420-1425.
22 H.Y. Lee and J.B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution”, Journal of Solid State Chemistry, 148 (1999) 81-84.
23 R.N. Reddy and R.G. Reddy, “Porous Structured Vanadium Oxide Electrode Material for Electrochemical Capacitors”, Journal of Power Sources, 156 (2006) 700-704.
24 E. Potiron, A.L.G.L. Salle, A. Verbaere, Y. Piffard, and D. Guyomard,“Electrochemically Synthesized Vanadium Oxides as Lithium Insertion Hosts”, Electrochimica Acta, 45 (1999) 197-214.
25 E. Potiron, A.L.G.L. Salle, S. Sarciaux, Y. Piffard, and D. Guyomard, “e-V2O5: Relationships between Synthesis Conditions, Material Characteristics and Lithium Intercalation Behavior”, Journal of Power Sources, 81-82 (1999) 666-669.
26 D.L. Silva, R.G. Delatorre, G. Pattanaik, G. Zangari, W. Figueiredo, R.P. Blum, H. Niehus, and A.A. Pasa, “Electrochemical Synthesis of Vanadium Oxide Nanofibers”, Journal of the Electrochemical Society, 155 (2008) E14-E17.
27 C.C. Hu, C.M. Huang, and K.H. Chang, “Anodic Deposition of Porous Vanadium Oxide Network with High Power Characteristics for Pseudocapacitors”, Journal of Power Sources, 185 (2008) 1594-1597.
28 C.M. Huang, C.C. Hu, K.H. Chang, J.M. Li, and Y.F. Li, “Pseudocapacitive Characteristics of Vanadium Oxide Deposits with a Three-dimensional Porous Structure”, Journal of The Electrochemical Society, 156[8] (2009) A667-A671.
29 C.C. Hu, K.H. Chang, C.M. Huang, and J.M. Li, “Anodic Deposition of Vanadium Oxides for Thermal-induced Growth of Vanadium Oxide Nanowires”, Journal of the Electrochemical Society, 156[11] (2009) D485-D489.
30 J.M. Li, K.H. Chang, and C.C. Hu, “A Novel Vanadium Oxide Deposit for the Cathode of Asymmetric Lithium-ion Supercapacitors”, Electrochemistry Communications, 12 (2010) 1800-1803.
31 Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, and Y. Lu,“Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage”, Advanced Functional Materials, 19[21] (2009) 3420-3426.
32 M. Jayalakshmi, M.M. Raoa, N. Venugopal, and K.B. Kim, “Hydrothermal Synthesis of SnO2-V2O5 Mixed Oxide and Electrochemical Screening of Carbon Nano-tubes (CNT), V2O5, V2O5-CNT, and SnO2-V2O5-CNT Electrodes for Supercapacitor Applications”, Journal of Power Sources, 166[2] (2007) 578-583.
33 J.N. Broughton and M.J. Brett, “Variations in MnO2 Electrodeposition for Electrochemical Capacitors”, Electrochimica Acta, 50[24] (2005) 4814-4819.
34 J. Wong, F.W. Lytle, R.P. Messmer, and D.H. Malotte, “K-edge Absorption Sectra of Selected Vnadium Compounds”, Physical Review B, 30[10] (1984) 5596-5610.
35 H. Zheng, F. Tang, Y. Jia, L. Wang, Y. Chen, M. Lim, L. Zhang, and G. Lu,“Layer-by-layer Assembly and Electrochemical Properties of Sandwiched Film of Manganese Oxide Nanosheet and Carbon Nanotube”, Carbon, 47 (2009) I534-I542.
36 E.C. Zampronio, T.A.F. Lassali, and H.P. Oliveira,“Synthesis, Characterization and Electrochemical Properties of the V2O5·nH2O/AlO(OH)·nH2O Xerogel Composite”, Electrochimica Acta, 51[2] (2005) 257-267.
37 S. Surnev, M.G. Ramsey, and F.P. Netzer, “Vanadium Oxide Surface Studies”, Progress in Surface Science, 73[4-8] (2003) 117-165.
38 顏君乘,“高真空退火處理對氧化釩薄膜磁性與結構的研究”,國立成奶j學物理研究所碩士論文,2005 年。
39 J.K. Chang and W.T. Tsai, “Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors”, Journal of the Electrochemical Society, 150[10] (2003) A1333-A1338.
40 C.K Lin, P.Y Lee, J.L Yang, C.Y Tung, N.F Cheng, and Y.K Hwu, “EXAFS Studies of Amorphous Fe50Ta50 Powders During Mechanical Alloying”, Journal of Non-Crystalline Solids, 232-234[11] (1998) 520-525.
41 P.Y. Lee, C.K. Lin, I.K Jeng, C.C. Wang, and G.S. Chen, “Characterization of Ni57Zr20Ti18Al5 Amorphous Powder Obtained by Mechanical Alloying”, Materials Chemistry and Physics, 84[2-3] (2004) 358-362.
42 C.K. Lin, K.H. Chuang, and C.Y. Lin, “Manganese Oxide Films Prepared by Sol-gel Process for Supercapacitor Application”, Surface and Coatings Technology, 202 (2007) 1272-1276.
43 C.K. Lin, C.H. Wu, C.Y. Tsai, C.Y. Chen, and S.C. Wang, “Pseudocapacitive Performance of Hybrid Manganese Oxide Films with Multiwalled-CNT Additions”, Surface and Coatings Technology, 205[5] (2010) 1595-1598.
44 C.Y. Chen, S.C. Wang, Y.H. Tien, W.T. Tsai, and C.K. Lin, “Hybrid Manganese Oxide Films for Supercapacitor Application Prepared by Sol-gel Technique”, Thin Solid Films, 518[5] (2009) 1557-1560.
45 C.Y. Chen, Y.R. Lyu, C.Y. Su, H.M. Lin, and C.K. Lin, “Characterization of Spray Pyrolyzed Manganese Oxide Powders Deposited by Electrophoretic Deposition Technique”, Surface and Coatings Technology, 202[4-7] (2007) 1277-1281.
46 C.Y. Chen, T.C. Chien, Y.C. Chan, C.K. Lin, and S.C. Wang, “Pseudocapacitive Properties of Carbon Nanotube/manganese Oxide Electrode Deposited by Electrophoretic Deposition”, Diamond and Related Materials, 18[2-3] (2009) 482-485.
47 C.K. Lin, K.H. Chuang, C.Y. Lin, C.Y. Tsay, and C.Y. Chen, “Manganese Oxide Films Prepared by Sol-gel Process for Supercapacitor Application”, Surface and Coatings Technology, 202[4-7] (2007) 1272-1276.
48 J.K. Chang, Y.L. Chen, and W.T. Tsai, “Effect of Heat Treatment on Material Characteristics and Pseudo-capacitive Properties of Manganese Oxide Prepared by Anodic Deposition”, Journal of Power Sources, 135[1-2] (2004) 344-353.
49 L.M. Chen, Q.Y. Lai, Y.J. Hao, Y. Zhao, and X.Y. Ji, “Investigations on Capacitive Properties of the AC/V2O5 Hybrid Supercapacitor in Various Aqueous Electrolytes”, Journal of Alloys and Compounds, 467 (2009) 465-471.
50 L.M. Chen, Q.Y. Lai, H.M. Zeng, Y.J. Hao, and J.H. Huang, “Effects of Various Factors on Capacitive Properties of VOx·nH2O Powders in Aqueous Electrolyte”, Journal of Applied Electrochemistry, 41[3] (2011) 299-305.
51 X. Zhao, B.M. Sanchez, P.J. Dobson, and P.S. Grant, “The Role of Nanomaterials in Redox-based Supercapacitors for Next Generation Energy Storage Devices”, Nanoscale, 3[3] (2011) 839-855.
52 G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, and M. Srinivasan, “Synthesis and Electrochemical Properties of Electrospun V2O5 Nanofibers as Supercapacitor Electrodes”, Journal of Materials Chemistry, 20[32] (2010) 6720-6725.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top