跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐國凱
研究生(外文):Guo-Kai Hsu
論文名稱:一維鋅基金屬氧化物奈米結構之光感測與光觸媒特性研究
論文名稱(外文):Study on One-dimensional Zinc-based-Metal Oxides Nanostructures of Photoresponsive and Photocatalystic Properties
指導教授:吳志明吳志明引用關係
指導教授(外文):Jyh-Ming Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:110
中文關鍵詞:錫酸鋅光激發光氧化鋅光感測光觸媒
外文關鍵詞:ZnOphotodetectorphotocatalyticZnSnO3PL
相關次數:
  • 被引用被引用:2
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用氣相傳輸法合成一維鋅基金屬氧化物奈米結構,產物包含氧化鋅(Zinc oxide, ZnO)奈米柱及複合錫酸鋅(Zinc stannate, i.e., ZnSnO3 and Zn2SnO4)奈米線,並分別研究此兩種結構之材料性質、光感測(Photosensing)及光觸媒(Photocatalysis)特性。
本研究以冷場發射式掃描式電子顯微鏡(Field emission scanning electron microscopy, FESEM)、薄膜X光繞射儀(Thin film X-ray diffractometer, TFXRD)、高解析穿透式電子顯微鏡(High-resolution transmission electron microscopy, HRTEM)分析材料特性,以光激發光(Photoluminescence, PL)判別材料的能隙及內部缺陷,並以X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析材料內部原子鍵結的型態,紫外光與可見光(ultraviolet-visible light, UV-vis)頻譜儀分析材料的光吸收性質。
本研究發現所合成ZnO奈米柱具備垂直優選[0001]方向,在以變溫(300-100 K)光激光(Photoluminescence, PL)頻譜儀研究材料之低溫光學性質時,發現其能階的變化由3.23 eV漸升至3.34 eV。在光感測特性方面,複合錫酸鋅奈米線具備正斜方晶之鈣鈦礦 (perovskit phase with orthorhombic structure)結構,在紫外光(315 nm < λ < 400 nm, I = 2.33mWcm-2)照射下,錫酸鋅奈米線的感測靈敏度可達2667,並具備快速反應與回覆時間~1-2秒。在光觸媒特性方面,錫酸鋅奈米線在紫外光(315 nm < λ < 400 nm, I = 2.33mWcm-2) 照射下,降解亞甲基藍溶液可在1小時內可達77.5 %,而可見光的降解率於6小時下可達60.5 %。研究發現複合錫酸鋅奈米線具備高效率之光觸媒特性,此乃來自於其低的電子與電洞對再結合率。
Vapor transport synthesis was used to synthesize one-dimensional zinc-based metal oxides, including zinc oxide nanorods and composite zinc stannate (i.e., ZnSnO3 and Zn3SnO4) nanowires. Investigate this two materials surface morphology, optical properties and photodetector, photocatalytic properties, respectively.
A filed emission scanning electron microscope (FESEM) was used to analyze its surface morphology. A thin film X-ray diffractometer (TFXRD) was used to analyze its crystal structure and composition. A high-resolution transmission electron microscope (HRTEM) was used to analyze its crystallization and atomic arrangement. Photoluminescence (PL) was used to analyze the energy gap and internal defect of the material. An X-ray photoelectron microscope (XPS) was used to analyze the type of internal atom binding. A Photodetector was used to study the nanodevice`s properties, and a photocatalytic was used to examine the system of photodegradation properties.
The synthetic ZnO nanorods have vertival preferred orientation [0001] in this study under a variety of temperatures of PL (300 K to 100 K) with energy gaps from 3.23 eV to 3.34 eV. Photodetector properties, zinc stannnate complex with perovskit phase with orthorhombic structure, under ultraviolet (UV-A, 315 nm < λ < 400 nm, I = 2.33 mWcm-2) had the highest sensitivities of 2666.67. The fast corresponding response and recovery times are 1 and 1.5 sec, respectively. The photocatalytic properties under 1 hour of UV-A (315 nm < λ < 400 nm, I = 2.33 mWcm-2) showed a photodegradation of 77.5 %, whereas under 6 hours of visible light (λ < 550 nm), the photodegradation was only 60.5 %. Composite Zinc stannate nanowires have the high efficiency photocatalytic properties because of the electron-hole pairs with a low recombination rate.
第一章 緒論……………………………………………………1
1.1前言……………………………………………….1
1.2研究動機………………………………………….3
第二章 文獻回顧………………………………………………9
2.1低維度奈米結構………………………………….9
2.2材料的選擇………………………………………15
2.3材料製備方法……………………………………25
2.4光感測……………………………………………28
2.5光觸媒……………………………………………36
第三章 實驗方法與儀器…………………………………….46
3.1實驗方法…………………………………………46
3.2材料合成儀器……………………………………53
3.3材料分析儀器……………………………………57
3.4量測儀器…………………………………………62
第四章 結果與討論………………………………………….65
4.1氧化鋅……………………………………………65
4.2錫酸鋅……………………………………………79
第五章 結論…………………………………………………105
5.1氧化鋅………………………………………….105
5.2錫酸鋅………………………………………….105
第六章 未來展望……………………………………………107
第七章 參考文獻……………………………………………108
1.A. D. Yoffe, Advan. Phys., 51 (2002) 799
2.B. Weintraub, Y. Wei, Z. L. Wang, Angew. Chem. Int. Ed., 48 (2009) 8981
3.S. Marathe, P. Koinkar, S. Ashtaputre, V. Sathe, M.A. More, S.K. Kulkarni, Thin solid film, 518 (2010) 3743
4.X. Y. Xue, Y. J. Chen, Y. G. Wang, T. H. Wang, Appl. Phys. Lett., 86 (2005) 233101
5.Z. L. Wang, J. Song, Science, 312 (2006) 242
6.X.Y. Xue, T.L. Guo, Z.X. Lin, T.H. Wang, Mater. Lett., 62 (2008) 1356
7.C. Fang, B. Geng, J. Liu, F. Zhan, Chem. Commun., 45 (2009) 2350
8.X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, Z. L. Wang, Adv. Mater., 21 (2009) 1
9.Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett., 78 (2001) 407
10.D. J. Ferm?瀋, E.A. Ponomarev, L.M. Peter, J. Electroanal. Chem., 473 (1999) 192
11.Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, J. Yao, Chem. Mater., 12 (2000) 3445
12.Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, J. Yu, J. Phys. Chem. C, 113 (2009) 4612
13.W. W. Wang, Y. J. Zhu, L. X. Yang, Adv. Func. Mater., 17 (2007) 59
14.N. Serponw, P.Maruthamuthu, P. Pichat, E. Pelizzatti, H. Hidaka, J. Photochem. Ohotobiol. A: Chemistry, 85 (1995) 247
15.C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen, Chem. Phys. Lett. 416 (2005) 75
16.C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, C. L. Hsu, Chem. Phys. Lett. 476 (2009) 69
17.C. F. Lin, C. H. Wu, Z. N. Onna, J Hazard, Mater., 154 (2008) 1033
18.L. Qin, C. Shing, S. Sawyer, P. S. Dutta,Optical Materials, 33 (2011) 359
19.Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13 (2003) 9
20.R. S. Wangner, W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89
21.J. Hu and R. G. Gordon, J. Appl. Phys., 71 (1992) 880
22.S. Ilixan, Y. Caglar, M. Caglar and F Yakuphanoglu, Appl. Surf. Science, 255 (2008) 2353
23.S. Y. Bae, C. W. Na, J. H. Kang, J. Park, J. Phys. Chem. B, 109 (2005) 2526
24.C. G. Van de Walle, Phys. Rev. Lett., 85 (2000) 1012
25.B. K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner, J. Sann, Appl. Phys. A, 88 (2007) 119
26.R. E. Dietz, H. Kamimura, M. D. Sturge, A. Yariv, Phys. Rev., 132 (1963) 1559
27.E. Prze´zdziecka, E. Kami´nska, K. P. Korona, E. Dynowska, W. Dobrowolski, R. Jakieła, Ł Kłopotowski and J Kossut, Semicond. Sci. Technol., 22 (2007) 10
28.M. T. Chen, M. P. Lu, Y. J. Wu, J. Song, C. Y. Lee, M. Y. Lu, Y. C. Chang, L. J. Chou, Z. L. Wang, L. J. Chen, Nano Lett., 10 (2010) 4387
29.J. Z. Zhao1, H. W. Liang1, J. C. Sun1, J. M. Bian1, Q. J. Feng1, L. Z. Hu1, H. Q. Zhang1, X. P. Liang1, Y. M. Luo1, G. T. Du, J. Phys. D: Appl. Phys., 41 (2008) 159110
30.G. Shen, P. C. Chen,Y. Bando, D. Golberg,C. Zhou, J. Phys. Chem. C, 112 (2008) 16405
31.Y. Jiang, X. M. Meng, J. Liu, Z. R. Hong, C. S. Lee, S. T. Lee, Adv. Mater., 14 (2003) 1195
32.W. W. Coffen, J. Amer. Ceram. Soc. 36 (1953) 207
33.N. Kamal Singh, A. Alqudami, S. Annapoorni, phys. status solidi A, 207 (2010) 1
34.http://en.wikipedia.org/wiki/Zinc_oxide
35.http://en.wikipedia.org/wiki/Tin_dioxide
36.方瓊菀,摻雜鋁、銻之氧化鋅奈米線結構之成長與特性分析,中興大學應用數學所 博士論文 (2009)
37.陳怡如,大氣熱裂檞法成長氧化鋅奈米結構在紫外光感測與光觸媒特性分析之研究逢甲大學材料科學與工程學系 碩士論文 (2010)
38.D. Kovacheva, K. Petrov, Solid State Ionics, 109 (1998) 327
39.Y. Inaguma, M. Yoshida, T. Katsumata, J. AM. CHEM. SOC., 130 (2008) 6704
40.J. Zhang, K. L. Yao, Z. L. Liu, G. Y. Gao, Z. Y. Sun, S. W. Fan, Phys. Chem. Chem. Phys., 12 (2010) 9197
41.S. Jeong, Y. Jeong, J. Moon, J. Phys. Chem. C, 112 (2008) 11082
42.M. J. Kim, S. H. Park, Y. D. Huh, Bull. Korean Chem. Soc. 32 (2011) 1757
43.J. Wang, X. Wei Sun, S. Xie, W. Zhou, Y. Yang, Crystal. Growth & Design, 8 (2008) 707
44.H. F. Lina, S. C. Liaob, S. W Hungb, C. T Hua, Mater. Chem. Phys. 117 (2009) 9
45.M. A. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc., 131 (2009) 3216
46.C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, Nano Lett., 7 (2007) 1003
47.H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater.,14 (2002) 158
48.郭証翔,成長二氧化錫銻奈米結構再電子場發射與感測元件之研究,逢甲大學材料科學與工程學系 碩士論文 (2009)
49.J. Zhou, Y.Gu, Y.Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D.L. Polla, Z. L. Wang, Appl. Phys. Lett., 94 (2009) 191103
50.Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, Appl. Phys. Lett., 86 (2005) 123117
51.J Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang, Appl. Phys. Lett, 94 (2009) 191103
52.A. Fujishima, K. Honda, Nature, 238 (1972) 37
53.賴信穎,二氧化鈦添加氫氧機磷灰石對水中汙染物光分解之效應成奶j學化學工程學系 碩士論文 (2007)
54.A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev., 95 (1995) 735
55.A. J. Bard, Science, 207 (1980) 239
56.T. Sakata, T. Kawai, Academic press, New York, 1983
57.Q.Zhang, L. Gao, Applied Catalysis B, 26 (2000) 207
58.M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem., 91 (1987) 4305
59.Richard E. Honig and Dean A. Kramer, RCA Review, 30 (1969) 285
60.白仰傑,以熱蒸鍍法成長奈米晶矽及其螢光光譜研究成奶j學光電工程研究所 碩士論文 (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top