跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張訓瑋
研究生(外文):Hsun-wei Chang
論文名稱:放電功率及元素組成漸進式電漿聚合抗指紋透明保固性鍍膜
論文名稱(外文):The Power Modulated Plasma-Polymerized Anti-fingerprint Transparent Protective Coating with a Gradient Elemental Composition
指導教授:陳克昌陳克昌引用關係何主亮何主亮引用關係
指導教授(外文):Keh-chang ChenJu-liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:四甲基二矽氧烷漸進式鍍膜四氟甲烷電漿聚合疏油抗指紋疏水
外文關鍵詞:HydrophobicTetrafluoromethanePlasma-polymerizationTetramethyldisiloxaneAnti-fingerprintOleophobicGradient coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
現今數位產品趨向輕、薄、短、小,觸控顯示器或可攜式電子產品逐漸被高分子材料所取代。這些產品頻繁地與手指直接接觸,容易在其表面殘留下指紋與刮痕。除破壞美觀外,更使局部螢幕畫面受到汙染而干擾使用者之視覺。高分子材料雖具備重量輕、易加工、可撓曲性及高透光度等優點,卻有硬度低、不耐刮及不耐高溫等缺點,因此,如何強化高分子材料表面的保固與抗指紋特性是當前電子產業的一大挑戰。然抗指紋所需之低表面能材料如氟碳化物其機械保固特性往往不足,符合機械保固特性之材料卻有較高的表面能而達不到抗指紋的效果。有鑑於此,本研究採用電漿聚合製程,利用兩種單體原料聚合所得之鍍膜分別具有保固及低表面能之特性,設計一次性製程於高分子表面上合成出兼具保固及抗指紋特性之漸進式鍍層。
研究第一部分首先採用四甲基二矽氧烷(Tetramethylsiloxane, TMDSO)為單體原料。先行探討電漿聚合四甲基二矽氧烷(Plasma-polymerized TMDSO, pp-TMDSO)的放電必v最適化,以聚碳酸酯(Polycarbonate, PC)為基材,找出具有最高鉛筆硬度之放電必v參數,做為漸進式鍍層之底層。結果顯示;鍍層鍵結主要以Si-OH、Si-O-Si及Si-CH3為主,Si-OH、Si-O-Si鍵結訊號峰隨放電必v提昇而逐漸降低,Si-CH3則逐漸增加。在較高放電必v(50 W)條件下,所得之鍍層具有較高的鉛筆硬度和附著力,分別為3H和5B。其水滴及油滴接觸角分別約為105°及20°。
接著第二部分除了通入TMDSO單體之外,也導入四氟甲烷(Tetrafluoromethane, CF4)來進行參雜氟的探討,沉積出含氟pp-TMDSO (pp-F:TMDSO)。改變CF4/(Ar+TMDSO+CF4)流量比以了解?洉t量對鍍層表面能的影響,並藉此找出最佳疏水及疏油之參數,做為漸進式鍍層之頂層。本部分之實驗採取較低的放電必v來舒緩電漿中的活性氟離子對鍍層的蝕刻作用。結果顯示;鍍層仍是以Si-OH、Si-O-Si及Si-CH3鍵結為主。鍍層之?狟欓t量隨著CF4/(Ar+TMDSO+CF4)流量比增加而增加,最大為11.2 at.%。隨著CF4/(Ar+TMDSO+CF4)流量比的增加,鍍層之鍵結型態除原本的Si-(R)4及(R)2-Si-O2外,逐漸出現(R)1-Si-O3及Si-O4之鍵結,顯示添加F有助於Si-O鍵生成,此外Si-F2、Si-F及C-F鍵結也隨之增加。其水滴接觸角仍維持在約100°,油滴接觸角則可更加提升至約30°,顯示?洉t之貢獻乃在於疏油特性。但?狟欓t之pp-F:TMDSO鉛筆硬度僅為F,百格附著力隨著CF4/(Ar+TMDSO+CF4)流量比的增加而降低至0B。
經過上述單層鍍膜的特性探討,第三部分乃取pp-TMDSO之較高鉛筆硬度做為底層之機械支撐,取pp-F:TMDSO之較高疏油性做為表面抗指紋頂層,透過放電必v及CF4/(Ar+TMDSO+CF4)流量比的漸進調控,設計一漸進式pp-F:TMDSO鍍層。結果顯示該漸進式pp-F:TMDSO鍍層之水滴及油滴接觸角分別為105°及31.7°,鉛筆硬度及百格附著力分別為3H及最高等級的5B,且光學穿透率為90%,與裸基材近似,並顯示抗指紋特性及保固特性都領先於商品化之iPhone保護貼。
The demands for lightening, slimness and miniaturization of current portable electronic appliances lead extensive usage of lightweight polymeric materials. These portable appliances, especially its touch panel, frequently contacted with human hands easily get fingerprint stains and scratches over the surface, which usually causes visual interference and inconvenience to the handler. Although polymer materials are highly formable, flexible and highly transparent, its insufficient mechanical strength for wear resistance and thermal durability limits their durability and compatibility for processing. To reform above disadvantages, surface modification for improving protectiveness and anti-fingerprint has become an essential in current electronic industry. Unfortunately, the commonly used low surface energy fluorine-carbon-based anti-fingerprint materials exhibit poor mechanical strength. On the contrary, mechanically durable materials usually do not acquire enough low surface energy for satisfactory anti-fingerprint performance. Accordingly, a compositional gradient coating, which combines siloxane-based material as the bottom mechanical support layer and low surface energy fluorine-carbon-based material as the top layer for anti-fingerprint purpose, via a single batch plasma-polymerization process is proposed in this study.
In part 1, the tetramethylsiloxane (TMDSO) was used as precursor to plasma-polymerize the mechanical support pp-TMDSO layer on polycarbonate (PC) substrate. RF discharge power was manipulated to obtain a film with optimized mechanical property. Si-OH, Si-O-Si and Si-CH3 function groups were detected in the pp-TMDSO films, where the fraction of Si-OH and Si-O-Si decreases but Si-CH3 increases with increasing discharge power. Ultimately, the film synthesized at higher discharge power (50W) presents the highest pencil hardness and film adhesion of 3H and 5B, respectively with its water and oil contact angle approximately 105° and 20°, respectively.
In part 2, tetrafluoromethane (CF4) with different gas flow ratio (CF4/(Ar+TMDSO+CF4)) was added during plasma polymerization of TMDSO to study the influences of fluorine dosage on the hydrophobicity and oleophobicity of plasma-polymerized fluorine-doped TMDSO (pp-F:TMDSO). A low RF discharge power level was used to avoid fluorine ion etching on the grown film. The results show that the obtained pp-F:TMDSO films are still mainly composed of Si-OH, Si-O-Si and Si-CH3 functional groups. The fluorine content in the coatings increases with the flow ratio of CF4 to a maximum of 11.2 at. %. At the same time the Si-(R)4 and (R)2-Si-O2 fraction decreases, while the fraction of (R)1-Si-O3 and Si-O4 increases. Fluorine doping does not affect the water contact angle, which remains at 100°; but increases the oil contact angle to 30°. The drawbacks of fluorine doping are the significant decrease in film hardness and film adhesion to F and 0B, respectively.
By combining the optimized conditions for obtaining pp-TMDSO and pp-F:TMDSO, a sequential deposition was carried out in part 3, where modulated RF discharge power and gradient CF4 flow rate were proceeded to create a pp-TMDSO bottom hard layer and compositional gradient pp-F:TMDSO top anti-fingerprint layer. Results show that the gradient pp-F:TMDSO film exhibits water and oil contact angles of 105° and 31.7°, a pencil hardness of 3H, and a film adhesion of 5B. The coated specimens remain an approximate optical transparency of 90%, which is close to the bare PC substrate. The anti-fingerprint performance and mechanical properties of the coating were largely ahead of commercialized iPhone screen protectors.
總 目 錄
誌 謝 I
中文摘要 II
Abstract IV
總 目 錄 VI
圖 目 錄 VIII
表 目 錄 XI
第一章 前言 1
第二章 文獻回顧 3
2.1抗沾黏技術的應用與發展 3
2.2抗指紋特性 5
2.3高分子表面抗指紋保固性鍍膜的發展 8
2.3.1保固性透明鍍膜 9
2.3.2透明抗指紋鍍膜 11
2.4電漿聚合原理與應用 14
2.5研究動機 16
第三章 研究方法與流程 17
3.1實驗流程 17
3.2實驗材料 18
3.3實驗設備 20
3.4鍍層參數設定 22
3.5鍍層分析 25
3.5.1微觀形貌觀察 25
3.5.2縱深成份分析 25
3.5.3傅立葉紅外線光譜儀分析 25
3.5.4化學組成分析 26
3.5.5鍍層光學性質分析 26
3.5.6鍍層水滴及油滴接觸角分析 26
3.5.7附著力試驗 27
3.5.8鉛筆硬度試驗 28
3.5.9抗指紋特性測試 28
第四章 結果與討論 30
4.1第一部分-放電必v對pp-TMDSO鍍層之影響 30
4.1.1鍍層微觀形貌及結構 30
4.1.2鍍層之水滴及油滴接觸角 32
4.1.3鍍層之光學特性 33
4.1.4鍍層之機械性質 34
4.2第二部分-CF4/(Ar+TMDSO+CF4)流量比對pp-F:TMDSO鍍層之影響 36
4.2.1鍍層微觀形貌及結構 36
4.2.2鍍層之化學鍵結 40
4.2.3鍍層之水滴及油滴接觸角 43
4.2.4鍍層之光學特性 44
4.2.5鍍層之機械性質 44
4.3第三部分-漸進式pp-F:TMDSO鍍層特性 46
4.3.1鍍層微觀形貌及結構 46
4.3.2鍍層之水滴及油滴接觸角 48
4.3.3鍍層之光學特性 48
4.3.4鍍層之機械性質 49
4.3.5鍍層之抗指紋特性 50
第五章 結論 52
參考文獻 54
[1]戴學斌、黃文啟、湯譯增、王瑤池、孫承正、李世欽,“奈米級抗沾黏鍍膜與電鍍硬鉻之特性比較”,工業材料電子報,2005。
[2]A. Hozumi and O. Takai, “Effect of hydrolysis groups in fluoro-alkyl silanes on water repellency of transparent two-layer hard-coatings”, Applied Surface Science, 103 (1996) 431-441.
[3]U. Schulz and N. Kaiser, "Vacuum coating of plastic optics", Progress in Surface Science, 81 (2006) 387-401.
[4]Y. L. Wu, Z. Chen and X. T. Zeng, “Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film”, Applied Surface Science, 254 (2008) 6952-6958.
[5]R. Knizikevicius, “Simulation of Si and SiO2 etching in CF4 plasma”, Vacuum, 82 (2008) 1191-1193.
[6]呂維倫、陳閔揚、陳耀忠、黃文啟,“IC封裝之表面抗沾黏薄膜研究與開發”,工業材料雜誌,202 (2003) 155-161。
[7]Y. Hirai, S. Yoshida, A. Okamoto, Y. Tanaka, M. Endo, S. Irie, H. Nakagawa and M. sasago, “Mold surface treatment for imprint lithography”, Journal of Photopolymer Science and Technology, 14(2001)457-462.
[8]H. Schift, S. Saxer, S. Park, C. Padeste, U. Pieles and J. Gobrecht, “Controlled co-evaporation of silanes for nanoimprint stamps”, Nanotechnology, 16 (2005) 171-175.
[9]M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, T.G.I. Ling, M. Keil and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectronic Engineering, 61-62 (2002) 441-448.
[10]S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kotz and J. Gobrecht, “Anti-adhesive layers on nickel stamps for nanoimprint lithography”, Microelectronic Engineering, 73-74 (2004) 196-201.
[11]X. Wang, Q. Ye, J. Liu, X. Liu and F. Zhow, “Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups”, Journal of Colloid and Interface Science, 351 (2010) 261-266.
[12]B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion,and drag reduction”, Progress in Materials Science, 56 (2011) 1-108
[13]鄭欽峰、鄭總輝、陳致源、陳振鑾,“自潔性塗層材料分析與發展現況”,工業材料雜誌,229 (2006) 160-166。
[14]黃淑娟、胡志明、郭信良、李秋煌,“奈米材料的產業應用與展望”,工業材料雜誌,274 (2009) 109-118。
[15]L. Y. L. Wu, S.K. Ngianb, Z. Chenb and D.T.T. Xuan, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces”, Applied Surface Science, 257 (2011) 2965-2969.
[16]A. Hozumi and O. Takai, “Preparation of silicon oxide films having a water-repellent layer by multiple-step microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 334 (1998) 54-59.
[17]鄭總輝、陳振鑾、陳致源、鄭欽峰, “疏水自潔塗層結構概論”,工業材料雜誌,218 (2005) 80-88。
[18]呂奇明、蘇俊瑋,“可撓式顯示器基板材料與成型技術”, 工業材料雜誌,273 (2009) 104-113。
[19]S. Sepeur, N. Kunze, B. Werner and H. Schmidt, “UV curable hard coatings on plastics”, Thin Solid Films, 351 (1999) 216-219.
[20]M. E. L. Wouters, D.P. Wolfs, M.C. van der Linde, J.H.P. Hovens and A.H.A. Tinnemans, “Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method”, Progress in Organic Coatings, 51 (2004) 312-320.
[21]D. Blanc, A. Last, J. Franc, S. Pavan and J. L. Loubet, “Hard UV-curable organo-mineral coatings for optical applications”, Thin Solid Films, 515 (2006) 942-946.
[22]G. Bayramoglu, M. V. Kahraman, N. Kayaman-Apohan and A. Gungor ,“Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups”, Progress in Organic Coatings, 57 (2006) 50-55.
[23]E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano and R. Taurino, “Scratch resistance of nano-silica reinforced acrylic coatings”, Progress in Organic Coatings, 62 (2008) 129-133.
[24]S. J. Jeon, J. J. Lee, W. Kim, T. S. Chang and S. M. Koo, “Hard coating films based on organosilane-modified boehmite nanoparticles under UV thermal dual curing”, Thin Solid Films, 516 (2008) 3904-3909.
[25]D. Katsamberis, K. Browall, C. Iacovangelo, M. Neumann and H. Morgner, “Highly durable coatings for automotive polycarbonate glazing”, Progress in Organic Coatings, 34 (1998) 130-134.
[26]J. Gottmann and E. W. Kreutz, “Pulsed laser deposition of alumina and zirconia thin films on polymers and glass as optical and protective coatings”, Surface and Coatings Technology, 116-119 (1999) 1189-1194.
[27]M. Kuhr, S. Bauer, U. Rothhaar and D. Wolff , “Coatings on plastics with the PICVD technology”, Thin Solid Films, 442 (2003) 107-116.
[28]E. Lugscheider, K. Bobzin, M. Maes and A. Kramer, “On the coating of polymers-basic investigations”, Thin Solid Films, 459 (2004) 313-317.
[29]A. Bousquet, V. Bursikova, A. Goullet, A. Djouadi, L. Zajickova and A. Granier, “Comparison of structure and mechanical properties of SiO2-like films deposited in O2/HMDSO pulsed and continuous plasmas”, Surface and Coatings Technology, 200 (2006) 6517-6521.
[30]J. Wohle, H. Ahn and K. T. Rie, “BCN coatings on polymer substrates by plasma CVD at low temperature”, Surface and Coatings Technology, 116-119 (1999) 1166-1171.
[31]Y. S. Lin and C.L. Chen, “Wear resistance of low-temperature plasma-polymerized organosilica deposited on poly(ethylene terephthalate): the effect of O2 addition”, Plasma Processes and Polymers, 3 (2006) 650-660.
[32]P. Frach, D. Gloess, H. Bartzsch, K. Taeschner, J. Liebig and E. Schultheiss, “Advanced key technologies for magnetron sputtering and PECVD of inorganic and hybrid transparent coatings”, Thin Solid Films, 518 (2010) 3105-3108.
[33]A. Hozumi and O. Takai, “Preparation of ultra water-repellent films by microwave plasma-enhanced CVD”, Thin Solid Films, 303 (1997) 222-225.
[34]T. Nishino, M. Meguro and K. Nakamae, “Poly(vinyl alcohol) with low surface free energy by fluorination”, International Journal of Adhesion and Adhesives, 19 (1999) 399-403.
[35]Y. Wu, H. Sugimura, Y. Inoue and O. Takai, “Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures”, Thin Solid Films, 435 (2003) 161-164.
[36]L. G. Jacobsohn, M. E. H. Maia da Costa, V.J. Trava-Airoldi and F.L. Freire Jr., “Hard amorphous carbon-fluorine films deposited by PECVD using C2H2-CF4 gas mixtures as precursor atmospheres”, Diamond and Related Materials, 12 (2003) 2037-2041.
[37]K. Teshima, H. Sugimura, Y. Inoue, O. Takai and A. Takano, “Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating”, Applied Surface Science, 244 (2005) 619-622.
[38]Y. Ohtsu, N. Yamagami and H. Fujita, “Ultra-water repellency of films prepared by capacitively coupled C2H2F2 Ar discharge plasma”, Japanese Journal of Applied Physics, 46 (2007) 679-681.
[39]C. T. Hsieh, Y. S. Cheng, S. M. Hsu and J. Y. Lin, “Water and oil repellency of flexible silica-coated polymeric substrates”, Applied Surface Science, 256 (2010) 4867-4872.
[40]S. H. Gao, L. H. Gao and K. S. Zhou, “Super-hydrophobicity and oleophobicity of silicone rubber modified by CF4 radio frequency plasma”, Applied Surface Science, (2011) accepted.
[41]H. Yasuda, Plasma Polymerization, New York; Academic Press, 1985。
[42]張修誠、周宛瑱、何主亮 “電漿聚合矽-氧-碳化合物於金屬表面之保護研究”,2005台灣鍍膜科技協會薄膜與奈米科技研討會暨國科會專題計畫研究成果發表會論文集,AP-25 硬質薄膜,2005年12月23-24日,台灣日月潭。
[43]Y. X. Liu, J. L. He, X. C. Chang, C. K. Lin and D. Lin, “Water permeation study of plasma polymerized TMDSO for organic light emitting diode application”, The International Conference on Metallurgical Coatings and Thin Films (ICMCTF), CP-8, April 23-April 27, 2007, San Diego, California, USA
[44]張修誠、周宛瑱、何主亮、陳俊名,"電漿聚合矽-氧-碳化合物於金屬表面之保護研究",真空科技,第二十二卷,第一期,(2009) 30-35。
[45]Y. F. Lan, H. R. Chang, and J. L. He, “Improvements of Indium Tin Oxide Film Deposited on Poly(ethylene terephthalate) Substrates by Plasma-Polymerized Hydrogenated Silicon-Carbon-Oxide Buffer Layer”, Japanese Journal of Applied Physics, 49 (2010) 05EA07
[46]張訓瑋、陳俊名、何主亮,“脈衝直流電漿聚合四甲基二矽氧烷在高分子面板基材的保固及透光性研究”,2008台灣鍍膜科技協會暨國科會專題計畫研究成果發表會論文集,E14功能性薄膜,2008年12月05-06日,明道大學。
[47]ASTM D3359-02, “Standard test method for measuring adhesion by tape test”, American Society for Testing and Materials, 2002.
[48]ASTM D3363-05, “Standard test method for film hardness by pencil test”, American Society for Testing and Materials, 2005.
[49]C. Y. Wu, W. C. Chen and D. S. Liu, “Surface modification layer deposition on flexible substrates by plasma-enhanced chemical vapour deposition using tetramethylsilane-oxygen gas mixture”, Journal of Physics D: Applied Physics, 41 (2008) 225305.
[50]Y. Wu, Y. Inoue, H. Sugimura, O. Takai, H. Kato, S. Murai and H. Oda, “Characteristics of ultra water-repellent thin films prepared by combined process of microwave plasma-enhanced CVD and oxygen-plasma treatment”, Thin Solid Films 407 (2002) 45-49.
[51]B. S. Hong, J. H. Han, S. T. Kim, Y. J. Cho, M. S. Park, T. Dolukhanyan and C. Sung, “Endurable water-repellent glass for automobiles”, Thin Solid Films, 351 (1999) 274-278.
[52]I. H. Tan, M. L. P. da Silva and N. R. Demarquette, “Paper surface modification by plasma deposition of double layers of organic silicon compounds”, Journal of Materials Chemistry, 11 (2001) 1019-1025.
[53]T. Nakagawa and T. Hiwatashi, “Water-repellent thin films from mixtures of fluoroalkylmethoxysilane and bis-(trialkoxysilyl)alkanes of various carbon-chain lengths using the sol-gel method and the fluoroalkylmethoxysilane dispersion mechanism”, Journal of Non-Crystalline Solids, 316 (2003) 228-237.
[54]K. Teshima, H. Sugimura, Y. Inoue, O. Takai and A. Takano, “Ultra-water-repellent poly(ethylene terephthalate) substrates”, Langmuir, 19 (2003) 10624-10627.
[55]J. D. Kim, K. H. Lee, K. Y. Kim, H. Sugimura, O. Takai, Y. Wu and Y. Inoue, “Characteristics and high water-repellency of a-C:H films deposited by r.f. PECVD”, Surface and Coatings Technology, 162 (2003) 135-139.
[56]J. K. Kim, S. H. Jeong, B. S. Kim and S. H. Shim, “Characterization and preparation of SiO2 and SiOF films using an RF PECVD technique from TEOS/O2 and TEOS/O2/CF4 precursors”, Journal of Physics D: Applied Physics, 37 (2004) 2425-2431.
[57]F. Iacona, G. Casella, F. L. Via, S. Lombardo, V. Raineri and G. Spoto, “Structural properties of fluorinated SiO2 thin films”, Microelectronic Engineering, 50 (2000) 67-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top