跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃馨卉
研究生(外文):Hsin-Hui Huang
論文名稱:稻稈稀硫酸水解對厭氧產氫之影響
論文名稱(外文):Hydrogen fermentation of dilute-acid hydrolyzed rice straw
指導教授:林秋裕林秋裕引用關係
指導教授(外文):Chiu-Yue Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:110
中文關鍵詞:醱酵產氫稀酸水解硫酸稻稈
外文關鍵詞:hydrogen fermentationdilute acid hydrolysisSulfuric acidRice straw
相關次數:
  • 被引用被引用:8
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
由於利用糧食作物來製造生質能源,導致威脅到人類糧食的需求與土地之利用,故近年發展第二代生質燃料,即以非糧食作物(如含木質纖維素之農業廢棄物)為料源,但纖維物質受限於低轉化率而有待提升競爭力,且台灣每年產出約142萬公噸的稻稈,故本研究探討酸水解技術促進生質纖維物之水解轉化作用。
本研究以田口實驗設計法探討加熱溫度(60、75、90oC)、加熱時間(0.5、1、2 h)、稻稈濃度(30、50、70 g/L)及硫酸濃度(5、10、20 g/L)等因子對稻稈醣解效果的影響及產生最高醣濃度的條件,再以混合菌種利用水解後的醣類進行厭氧醱酵,以評估各水解條件所產生的醣類或其他副產品對後續產氫的影響。以稻稈濃度30 g/L在90oC及硫酸濃度20 g/L加熱2 h有最高的還原糖濃度4873 mg/L;並發現木糖為稀硫酸水解後的主要單糖,其次為阿拉伯糖;各醣解皆未檢出糠醛。利用醣化水解液測試厭氧產氫,產氫最佳條件與最大醣化水解條件相同(稻稈濃度30 g/L、加熱溫度90oC、加熱2 h及硫酸濃度20 g/L),可得稻桿產氫率達33.8 mL/g rice straw。
以鹽酸、硫酸、磷酸和硝酸水解稻桿後再產氫,結果顯示以硫酸處理稻稈有最大氫氣產率29.6 mL/g rice straw;其次為磷酸。再以單因子實驗設計找出利用硫酸醣化水解液有最大產氫效能的培養溫度、菌種及pH。發現中興污泥在培養溫度45oC、pH5.5有最高氫氣產率(27.5 mL H2/g rice straw),且無H2S。
為大量利用稻稈廢棄物產氫之可行性,以稻稈水解最佳條件與產氫最佳培養條件啟動連續流試驗。HRT 5d之產氫及產氣速率分別為112.3 mL/L/d及350.6 mL/L/d;縮短HRT至4 d時,則產氣率為211.1 mL/L/day,產氫率為559.6 mL/L/day 。此外,HRT 4 d之氫氣產率為56.3 mL/g rice straw(約2.5 mmol/g straw);與HRT 5天相比(37.4 mL/g rice straw),提升約50%,與Nguyen et al. (2010)利用10%氨水及1.0%稀硫酸預處理有最大產氫產率(2.7 mmol/g straw)相比,結果相近(Nguyen et al. ,2010)。

關鍵字:稻稈、硫酸、稀酸水解、醱酵產氫
As the use of food crops to produce biomass energy causing a threat to human food demand and land use, in recent years the development of second generation biofuels, that is using non-food feed stock/crops (such as agricultural waste containing lignocellulose) as the source is attractive.However, lignocelluloses usage is limited by the low conversion rate. Moreover, Taiwan produces annually around 1.42 million tonnes of rice straw. Therefore, this study used acid hydrolysis technology for hydrolyzing lignocellulose, and detailed the impact of various environmental factors.
The operation conditions of heating temperature (60, 75, 90oC), heating time (0.5, 1.0, 2.0 h), rice straw concentration (30, 50, 70 g/L) and sulfuric acid concentrations (5, 10, 20 g/L) for hydrolyzing rice straw were optimized by using Taguchi experimental design method. To assess the effects of the concentrations of the reducing sugar and other by-products at various hydrolysis conditions for hydrogen production, a batch experiment was carried out by using anaerobic sewage sludge to convert the reducing sugar. A peak reducing sugar concentration of 4873 mg/L was obtained at rice straw concentration of 30 g/L, heating temperature of 90oC, sulfuric acid concentration of 20 g/L, and heating 2 h. Moreover, the results show that xylose and arabinose were the major monosaccharides after hydrolysis. No furfural was detected in the hydrolysis solution. Converting rice straw reducing sugar (containing solid) by anaerobic fermentation, the suitable operation condition with the peak hydrogen yield of 33.8 mL/g rice straw (35.8 mL/g TS) was same as the optimal hydrolysis conditions (rice straw concentration 30 g/L, heating temperature 90oC, heating 2 h and concentration of sulfuric acid 20 g/L).
Various types of acid (hydrochloric, sulfuric, phosphoric and nitric acids) were used to hydrolyze rice straw for producing hydrogen. The results show that the peak hydrogen yield (29.6 mL/g rice straw) was obtained by using sulfuric acid. A single-factor experimental design to investigate temperature, seed and pH was used to optimize the hydrogen production conditions. The results show that using sewage sludge (C.H.), culturing temperature 45oC, and pH5.5 had peak hydrogen yield of 27.5 mL H2/g rice straw and no H2S was detected.
The optimal operating conditions of hydrolysis and hydrogen production were used to investigate the cultivation strategy in a continuous system. The hydrogen production rate and gas production rate were 112.3 mL/L/d and 350.6 mL/L/d, respectively, at HRT 5d. However, shorting HRT to 4 d could increase the hydrogen production rate to 211.1 mL/L/d and the gas production rate to 559.6 mL/L/d. In addition, the peak hydrogen yield of 56.3 mL/g rice straw was obtained at HRT 4 d, which is 50% higher than the value (37.4 mL/g rice straw) at HRT 5 d.

Key word: Rice straw, Sulfuric acid, dilute acid hydrolysis, hydrogen fermentation
致謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 VIII
圖目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與架構 2
第二章 文獻回顧 4
2-1 稻稈 4
2-1-1 稻稈的纖維素組成 4
2-1-2 稻稈的應用 6
2-2生質料源前處理技術 7
2-2-1 物理法 8
2-2-2 物理化學法 8
2-2-3 化學法 10
2-2-4 生物法 11
2-3厭氧生物醱酵 14
2-3-1纖維素水解菌 14
2-3-2厭氧產氫菌 19
2-3-3硫酸鹽還原菌 21
2-3-4厭氧醱酵之環境因子 23
2-4實驗設計之應用 26
第三章 實驗材料與方法 27
3-1 實驗材料 27
3-1-1 植種污泥 27
3-1-2 基質 28
3-1-3實驗裝置 29
3-2 實驗方法 32
3-2-1 基質前處理方法 32
3-2-2 批次試驗方法 32
3-3-3 連續流操作方法 35
3-3-4 分析項目 36
第四章 結果與討論 48
4-1 稀硫酸水解效益分析 48
4-1-1水解因子之影響程度 48
4-1-2稻稈組成與結構變化 52
4-2 稀酸水解液應用於醱酵產氫 55
4-2-1糖解效率 55
4-2-2 水解溫度 63
4-2-3 稀酸種類 65
4-3 醱酵產氫之環境因子 67
4-3-1 菌種 67
4-3-2 pH及培養溫度 70
4-4水力停留時間對稀酸水解液醱酵產氫之影響 79
第五章 結論與建議 88
5-1 結論 88
5-2 建議 88
中文參考文獻 89
英文參考文獻 92
行政院農業委員會(2009)。98年農業統計年報。
周楚洋(1998)。農業廢棄物處理之回顧與前瞻,高知武教授紀念研討會論文集,pp.121-130。
莊義雄(1996)。稻田收穫後稻草處理與利用,花蓮區農業專訊15,pp.18-19。
黃啟裕(2008)。纖維素產氫技術在生質能源上之發展,農業生技產業季刊,No.13,pp.54-60。
林昀輝、白明德、盧文章、李宏台(2008)。纖維素物質水解技術,化工資訊與商情,No. 58, pp. 36-41。
陳子逸(2010)。預處理對纖維物質酵素水解之影響,逢甲化學工程學系碩士論文,台中。
黃至宇(2010)。醱酵殘餘物厭氧醱酵產能之研究, 逢甲環境工程與科學學系碩士論文,台中。
賴世杰、鄭捷倫、羅泳中、張嘉修(2010)。纖維酒精之技術開發與展望,化工技術,第18卷,第7期,pp. 89-109。
趙國評(2007)。淺談生質酒精,林業研究專訊,Vol.14,No.3,pp. 14-17。
曾豐祥(2007)。纖維素分解產氫之微生物社會結構與動態變化,國立成奶j學生命科學所碩士論文,台南。
黃雯靖(2006)。纖維素物質之厭氧醇化,逢甲環境工程與科學學系碩士論文,台中。
劉軼超、王增長(2008)。硫酸鹽廢水生物處理的影響因素,科技情報與開發經濟,第18卷,第2期,pp. 126-127。
黃山茂、彭春華(2005)。含硫酸鹽有機廢水處理問題的探討,江西化工,第4期,pp. 35-37。
陳弘彬(2004)。無機硫化合物對厭氧醱酵產氫之影響,逢甲水利工程學系碩士論文,台中。
王金雄(2006)。以厭氧污泥進行生質產氫醱酵的策略,逢甲化學工程學系博士論文,台中。
尹浚任(2008)。多醣類物質醱酵產氫之研究,逢甲化學工程學系碩士論文,台中。
林秋裕(1995)。環境工程微生物學,國彰出版社。
李輝煌(2002)。田口方法:品質設計的原理與實務,高立圖書有限公司,第49-273頁。
鍾清章(1999)。田口式品質工程導論,中華民國品質管制學會,第39-225頁。
張雪松、朱建良(2005)。稀酸處理對稻稈厭氧醱酵產氫之影響,可再生能源,第122卷,第20-22頁。
周俊虎、戚峰、程軍、谢斌飛、劉建忠、岑可法(2007)。稻稈醱酵產氫的影響因素研究,環境科學,第28卷第五期,第1153-1157頁。
李國興、蘇偉昌、陳子逸、劉彥妏、林屏杰(2009)。稻稈纖維轉化產氫之研究,中華民國環境工程學會 2009 廢棄物處理技術研討會。
林則葹、江家宏、周建嘉、曾冠菁、陳翼翔、何志鴻、吳建一,以酸水解稻稈及羧甲基纖維素作為乙醇發酵之碳源。
任天寶、張玲玲、宋安東、謝慧、王鳳芹、張百良(2010)。稻草秸桿多酶水解條件研究,可再生能源,第28卷第二期,第67-71頁。
郭威志(2007)。菌種篩選及玉米穗軸水解液之醱酵生產木糖醇,朝陽科技大學應用化學研究所,台中。
陳尚鈃、勇強、徐勇、朱均均、余世袁(2009)。玉米秸稈稀酸預處理的研究,林產化學與工業,第29卷第二期,第 27-32 頁。
徐勇、顧依娜、范麗、勇強、余世袁、曾韜(2010)。楊木稀酸預處理液木糖醱酵液產乙醇工藝條件的研究,林產化學與工業,第30卷第三期,第 19-23 頁。
陳亞寧、陳昀(2010)。稀鹽酸水解棉纖維反應過程的綜合研究,北京服裝學院學報,第30卷第二期,第23-28頁。
APHA, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, New York, USA (1996).
Anvar U. Buranov and G. Mazza, “Lignin in straw of herbaceous crops” , Industrial Crops and Products, Vol. 28, pp. 237-259 (2008).
Alvira P., Pejo E.T., Ballesteros M. and Negro M.J., “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review”, Bioresource Technology, Vol.101, pp. 4851-4861 (2010).
Bisaria V.S. and Ghose T.K., “Biodegradation of cellulostic materials: substrates, microorganisms, enzymes and products”, Enzyme and Microbial Technology, 3: 90-104 (1981).
Bhat M.K. and Bhat S., “Cellulose degrading enzymes and their potential industrial applications”, Biotechnol., Adv. 15, pp.583-620 (1997).
Carvalheiro F., Duarte L.C. and Gírio F.M., “Hemicellulose biorefineries: a review”, Biomass Pretreatments. J. Sci. Ind. Res., Vol.67, pp.849-864 (2008).
Chen M., Zhao J. and Xia L., ''Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility'', Biomass and bioenergy, Vol. 33, pp.1381-1385 (2009).
Dabrock B., Bahl H. and Gottschalk G., “Parameters affecting solvent production by Clostridium pasteurianum”, Appl. Envir. Microbiol, Vol. 58, No. 4, pp. 1233-1239 (1992).
Das D. and Veziroglu T.N., “Hydrogen production by biological processes: a survey of literature”, Hydrogen Energy , Vol. 26, pp. 13-28 (2001).
Doi R.H., “Cellulases of Mesophilic Microorganisms”, Annals of the New York Academy of Sciences, Vol. 1125, pp. 267-279 (2008).
Gottschalk G. and Bacterial M., 2ed edition, Springer-Verlag, New York (1986).
Guedon E., Desvaux M. and Petitdemange H., “Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology”, Vol. 68(1), pp. 53-58 (2001).
Galbe M. and Zacchi G., “A review of the production of ethanol from softwood”, Appl. Microbiol Biotechnol, Vol.59, pp.618-628 (2002).
Gray K.A., Zhao L. and Emptage M., “Bioethanol”, Current Opinion in Chemical Biology, Vol. 10, pp. 141-146 (2006).
Girio F.M., Fonseca C., Carvalheiro F., Duarte L.C., Marques S. and Łukasik R.B., “Hemicelluloses for fuel ethanol: A review”, Bioresource Technology, Vol. 101, pp. 4775–4800 (2010).
Hwang J.H., Choi J.A., R.A.I. Abou-Shanab, Bhatnagar A., Min B., Song H., Kumar E., Choi J., Lee E.S., Kim Y.J., Um S., Lee D.S. and Jeon B.H., “Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora”, Hydrogen energy, Vol. 34, pp. 9702-9710 (2009).
Hu R., Lin L., Liu T. and Liu S., “Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure”, Bioresource Technology, Vol.101, pp.3586-3594 (2010).
Karimi K., Kheradmandinia S. and Taherzadeh M.J., ''Conversion of rice straw to sugars by dilute-acid hydrolysis'' ,Biomass and Bioenergy Vol. 30 , pp. 247–253 (2006).
Ko J.K., Bak J.S., Jung M.W., Lee H.J., Choi I.G., Kim T.H. and Kim K.H., “Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes”, Bioresource Technology, Vol.100, pp. 4374-4380 (2009).
Kumar P., Barrett D.M., Delwiche M.J. and Stroeve P., “Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production”, Ind. Eng. Chem. Res., Vol. 48, No. 8 (2009).
Lee R.L., Charles E.W., and Tillman U., “Gerngross Biocommodity Engineering”, Biotechnol. Prog., Vol. 15, pp. 777-793 (1999).
Lin C.Y., Chen C.C., and Lin M.C., “Hydrogen in anaerobic acidogenesis process influences of thermal isolation and acclimation environment”, Journal of The Chinese Institute of Environmental Engineering, Vol. 10, pp. 163-168 (2000).
Lynd L.R., Weimer P.J., Zyl W.H.V. and Pretorius I.S., “Microbial cellulose utilization: Fundamentals and biotechnology”, Microbiology and Molecular Biology Review, 66(3): 506-577 (2002).
Liu H., Zhang T. and Fang H.H.P., “Thermophilic H2 production from a cellulosecontaining wastewater”, Biotechnol Lett, 25: 365-369 (2003).
Mizuno O., Li Y.Y. and Noike T., “The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion”, Wat. Res., Vol. 32, No. 5, pp. 1626-1634 (1998).
Maidak B. L., Cole J.R., Lilburn T.G., Parker C.T. Jr., Saxman P.R., Stredwick J.M., Garrity G.M., Li B., Olsen G.J., Pramanik S., Schmidt T.M. and Tiedje J.M., “The RDP (Ribosomal Database Project) continues”, Nucleic Acids Res., Vol. 28, pp.173-174 (2000).
Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M. and Ladisch M., “Features of promising technologies for pretreatment of lignocellulosic biomass”, Bioresource Technology, Vol. 96, pp. 673-686 (2005).
Nguyen T.A.D., Kim K.R., Kim M.S. and Sim S.J., “Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana”, Hydrogen energy, Vol.35, pp.13392–13398 (2010).
Pan C.M., Ma H.C., Fan Y.T. and Hou H.W., ''Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation'', Hydrogen energy ,Vol. 36, pp.4852-4862 (2011).
Schwarz W.H., “The cellulosome and cellulose degradation by anaerobic bacteria”, Appl. Microbiol. Biotechnol. 56: 634-649 (2001).
Sun Y. and Cheng J., “Hydrolysis of lignocellulosic materials for ethanol production: a review”, Bioresource Technology, Vol.83, pp. 1-11 (2002).
Saxena I.M. and Brown R.M., “Biochemistry and Molecular Biology of Cellulose Biosynthesis in Plants: Prospects for Genetic Engineering”, Cellulose Biosynthesis in Plants, pp.135-160 (2009).
Weil J., Westgate P., Kohlmann K. and Ladisch M.R., “Cellulose pretrratments of lignocellulosic substrates”, Enzyme Microb. Technol., Vol. 16, pp. 1002-1004 (1994).
Xiao B., Sun X.F. and Sun R.C., ''Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw'', Polymer Degradation and Stability, Vol. 74, pp.307-319 (2001).
Zee J.W.V., Mohtadi R. and Lee W.K., “The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC,” Applied Catalysis B: Environmental 56, pp.37–42 (2005).
Zhu S., Wu Y., Yu Z., Wang C., Yu F., Jin S., Ding Y., Chi R., Liao J. and Zhang Y., ''Comparison of Three Microwave/Chemical Pretreatment Processes for Enzymatic Hydrolysis of Rice Straw '',Biosystems Engineering, Vol.93, pp.279-283 (2006).
Zhong W., Zhang Z., Qiao W., Fu P. and Liu M., ''Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion'', Renewable Energy , Vol. 36, pp. 1875-1879 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top